Regression Analysis and Linear Models

Concepts, Applications, and Implementation

Richard B. Darlington
Andrew F. Hayes

Series Editor's Note by Todd D. Little

THE GUILFORD PRESS
New York London
Contents

List of Symbols and Abbreviations

1 • Statistical Control and Linear Models

1.1 Statistical Control / 1
1.1.1 The Need for Control / 1
1.1.2 Five Methods of Control / 2
1.1.3 Examples of Statistical Control / 4

1.2 An Overview of Linear Models / 8
1.2.1 What You Should Know Already / 12
1.2.2 Statistical Software for Linear Modeling and Statistical Control / 12
1.2.3 About Formulas / 14
1.2.4 On Symbolic Representations / 15

1.3 Chapter Summary / 16

2 • The Simple Regression Model

2.1 Scatterplots and Conditional Distributions / 17
2.1.1 Scatterplots / 17
2.1.2 A Line through Conditional Means / 18
2.1.3 Errors of Estimate / 21

2.2 The Simple Regression Model / 23
2.2.1 The Regression Line / 23
2.2.2 Variance, Covariance, and Correlation / 24
2.2.3 Finding the Regression Line / 25
2.2.4 Example Computations / 26
2.2.5 Linear Regression Analysis by Computer / 28

2.3 The Regression Coefficient versus the Correlation Coefficient / 31
2.3.1 Properties of the Regression and Correlation Coefficients / 32
2.3.2 Uses of the Regression and Correlation Coefficients / 34

2.4 Residuals / 35
2.4.1 The Three Components of Y / 35
2.4.2 Algebraic Properties of Residuals / 36
2.4.3 Residuals as Y Adjusted for Differences in X / 37
2.4.4 Residual Analysis / 37

2.5 Chapter Summary / 41

3 • Partial Relationship and the Multiple Regression Model

3.1 Regression Analysis with More Than One Predictor Variable / 43
3.1.1 An Example / 43
3.1.2 Regressors / 46

xix
3.1.3 Models/47
3.1.4 Representing a Model Geometrically 149
3.1.5 Model Errors / 50
3.1.6 An Alternative View of the Model / 52

3.2 The Best-Fitting Model / 55
3.2.1 Model Estimation with Computer Software / 55
3.2.2 Partial Regression Coefficients / 58
3.2.3 The Regression Constant / 63
3.2.4 Problems with Three or More Repressors / 64
3.2.5 The Multiple Correlation R / 68

3.3 Scale-Free Measures of Partial Association / 70
3.3.1 Semipartial Correlation / 70
3.3.2 Partial Correlation / 71
3.3.3 The Standardized Regression Coefficient / 73

3.4 Some Relations among Statistics / 75
3.4.1 Relations among Simple, Multiple, Partial, and Semipartial Correlations / 75
3.4.2 Venn Diagrams / 78
3.4.3 Partial Relationships and Simple Relationships May Have Different Signs / 80
3.4.4 How Covariates Affect Regression Coefficients / 81
3.4.5 Formulas for bj, prsr, and R/82

3.5 Chapter Summary / 83

4 • Statistical Inference in Regression 85

4.1 Concepts in Statistical Inference / 85
4.1.1 Statistics and Parameters / 85
4.1.2 Assumptions for Proper Inference / 88
4.1.3 Expected Values and Unbiased Estimation 191

4.2 The ANOVA Summary Table / 92
4.2.1 Data = Model + Error / 95
4.2.2 Total and Regression Sums of Squares / 97
4.2.3 Degrees of Freedom / 99
4.2.4 Mean Squares /100

4.3 Inference about the Multiple Correlation / 102
4.3.1 Biased and Less Biased Estimation of R^2 /102
4.3.2 Testing a Hypothesis about R /104

4.4 The Distribution of and Inference about a Partial Regression Coefficient / 105
4.4.1 Testing a Null Hypothesis about β_j /105
4.4.2 Interval Estimates for β_j /106
4.4.3 Factors Affecting the Standard Error of β_j /107
4.4.4 Tolerance /109

4.5 Inferences about Partial Correlations / 112
4.5.1 Testing a Null Hypothesis about β_{pr} and β_{sr} / 222
4.5.2 Other Inferences about Partial Correlations /113

4.6 Inferences about Conditional Means / 116

4.7 Miscellaneous Issues in Inference / 118
4.7.1 How Great a Drawback Is Collinearity? /118
4.7.2 Contradicting Inferences /119
4.7.3 Sample Size and Nonsignificant Covariates /121
4.7.4 Inference in Simple Regression (When k = 1) /121

4.8 Chapter Summary / 122

5 • Extending Regression Analysis Principles 125

5.1 Dichotomous Regressors / 125
5.1.1 Indicator or Dummy Variables /125
5.1.2 Estimates of Y Are Group Means / 226
5.1.3 The Regression Coefficient for an Indicator Is a Difference /128
Contents

5.1.4 A Graphic Representation /129
5.1.5 A Caution about Standardized Regression Coefficients for Dichotomous Regressors /130
5.1.6 Artificial Categorization of Numerical Variables / 232
5.2 Regression to the Mean / 135
5.2.1 How Regression Got Its Name /135
5.2.2 The Phenomenon /135
5.2.3 Versions of the Phenomenon /138
5.2.4 Misconceptions and Mistakes Fostered by Regression to the Mean /140
5.2.5 Accounting for Regression to the Mean Using Linear Models /141
5.3 Multidimensional Sets / 144
5.3.1 The Partial and Semipartial Multiple Correlation /145
5.3.2 What It Means If PR = 0 or SR = 0 /148
5.3.3 Inference Concerning Sets of Variables /148
5.4 A Glance at the Big Picture / 152
5.4.1 Further Extensions of Regression /153
5.4.2 Some Difficulties and Limitations /153
5.5 Chapter Summary / 155

6* Statistical versus Experimental Control

6.1 Why Random Assignment? / 158
6.1.1 Limitations of Statistical Control /158
6.1.2 The Advantage of Random Assignment 1159
6.1.3 The Meaning of Random Assignment /160
6.2 Limitations of Random Assignment / 162
6.2.1 Limitations Common to Statistical Control and Random Assignment /162
6.2.2 Limitations Specific to Random Assignment /165
6.2.3 Correlation and Causation /166
6.3 Supplemeting Random Assignment with Statistical Control / 169
6.3.1 Increased Precision and Power /169
6.3.2 Invulnerability to Chance Differences between Groups 1174
6.3.3 Quantifying and Assessing Indirect Effects 1175
6.4 Chapter Summary / 176

7 • Regression for Prediction

7.1 Mechanical Prediction and Regression / 177
7.1.1 The Advantages of Mechanical Prediction 1177
7.1.2 Regression as a Mechanical Prediction Method /178
7.1.3 A Focus on R Rather Than on the Regression Weights /180
7.2 Estimating True Validity / 181
7.2.1 Shrunken versus Adjusted R /181
7.2.2 Estimating \(t RS \) /183
7.2.3 Shrunken R Using Statistical Software 1186
7.3 Selecting Predictor Variables / 188
7.3.1 Stepwise Regression /189
7.3.2 All Subsets Regression 1192
7.3.3 How Do Variable Selection Methods Perform? /192
7A Predictor Variable Configurations / 195
7.4.1 Partial Redudancy (the Standard Configuration) /196
7.4.2 Complete Redudancy /198
7.4.3 Independence /199
7.4.4 Complementarity /199
7.4.5 Suppression /200
7.4.6 How These Configurations Relate to the Correlation between Predictors /201
7AH Configurations of Three or More Predictors /205
7.5 Revisiting the Value of Human Judgment / 205
7.6 Chapter Summary / 207
8 • Assessing the Importance of Regressors

8.1 What Does It Mean for a Variable to Be Important? / 210
8.1.1 Variable Importance in Substantive or Applied Terms / 210
8.1.2 Variable Importance in Statistical Terms / 211

8.2 Should Correlations Be Squared? / 212
8.2.1 Decision Theory / 213
8.2.2 Small Squared Correlations Can Reflect Noteworthy Effects / 217
8.2.3 Pearson’s r as the Ratio of a Regression Coefficient to Its Maximum Possible Value / 218
8.2.4 Proportional Reduction in Estimation Error / 220
8.2.5 When the Standard Is Perfection / 222
8.2.6 Summary / 223

8.3 Determining the Relative Importance of Regressors in a Single Regression Model / 223
8.3.1 The Limitations of the Standardized Regression Coefficient / 224
8.3.2 The Advantage of the Semipartial Correlation / 225
8.3.3 Some Equivalences among Measures / 226
8.3.4 Eta-Squared, Partial Eta-Squared, and Cohen’s f-Squared / 227
8.3.5 Comparing Two Regression Coefficients in the Same Model / 229

8.4 Dominance Analysis / 233
8.4.1 Complete and Partial Dominance / 235
8.4.2 Example Computations / 236
8.4.3 Dominance Analysis Using a Regression Program / 237

8.5 Chapter Summary / 240

9 • Multicategorical Regressors

9.1 Multicategorical Variables as Sets / 244
9.1.1 Indicator (Dummy) Coding / 245
9.1.2 Constructing Indicator Variables / 249
9.1.3 The Reference Category / 250
9.1.4 Testing the Equality of Several Means / 252
9.1.5 Parallels with Analysis of Variance / 254
9.1.6 Interpreting Estimated Y and the Regression Coefficients / 255

9.2 Multicategorical Regressors as or with Covariates / 258
9.2.1 Multicategorical Variables as Covariates / 258
9.2.2 Comparing Groups and Statistical Control / 260
9.2.3 Interpretation of Regression Coefficients / 264
9.2.4 Adjusted Means / 266
9.2.5 Parallels with ANCOVA / 268
9.2.6 More Than One Covariate / 271

9.3 Chapter Summary / 273

10 • More on Multicategorical Regressors

10.1 Alternative Coding Systems / 276
10.1.1 Sequential (Adjacent or Repeated Categories) Coding / 277
10.1.2 Helmert Coding / 283
10.1.3 Effect Coding / 287

10.2 Comparisons and Contrasts / 289
10.2.1 Contrasts / 289
10.2.2 Computing the Standard Error of a Contrast / 291
10.2.3 Contrasts Using Statistical Software / 292
10.2.4 Covariates and the Comparison of Adjusted Means / 294

10.3 Weighted Group Coding and Contrasts / 298
10.3.1 Weighted Effect Coding / 298
10.3.2 Weighted Helmert Coding / 300
11 • Multiple Tests

11.1 The Multiple Test Problem / 312
 11.1.1 An Illustration through Simulation / 312
 11.1.2 The Problem Defined / 315
 11.1.3 The Role of Sample Size / 316
 11.1.4 The Generality of the Problem / 317
 11.1.5 Do Omnibus Tests Offer "Protection"? / 319
 11.1.6 Should You Be Concerned about the Multiple Test Problem? / 319

11.2 The Bonferroni Method / 320
 11.2.1 Independent Tests / 321
 11.2.2 The Bonferroni Method for Nonindependent Tests / 322
 11.2.3 Revisiting the Illustration / 324
 11.2.4 Bonferroni Layering / 324
 11.2.5 Finding an "Exact" p-Value / 325
 11.2.6 Nonsense Values / 327
 11.2.7 Flexibility of the Bonferroni Method / 327
 11.2.8 Power of the Bonferroni Method / 328

11.3 Some Basic Issues Surrounding Multiple Tests / 328
 11.3.1 Why Correct for Multiple Tests at All? / 329
 11.3.2 Why Not Correct for the Whole History of Science? / 330
 11.3.3 Plausibility and Logical Independence of Hypotheses / 331
 11.3.4 Planned versus Unplanned Tests / 335
 11.3.5 Summary of the Basic Issues / 338

11.4 Chapter Summary / 338

12 • Nonlinear Relationships

12.1 Linear Regression Can Model Nonlinear Relationships / 341
 12.1.1 When Must Curves Be Fitted? / 342
 12.1.2 The Graphical Display of Curvilinearity / 344

12.2 Polynomial Regression / 347
 12.2.1 Basic Principles / 347
 12.2.2 An Example / 350
 12.2.3 The Meaning of the Regression Coefficients for Lower-Order Regressors / 352
 12.2.4 Centering Variables in Polynomial Regression / 354
 12.2.5 Finding a Parabola's Maximum or Minimum / 356

12.3 Spline Regression / 357
 12.3.1 Linear Spline Regression / 358
 12.3.2 Implementation in Statistical Software / 363
 12.3.3 Polynomial Spline Regression / 364
 12.3.4 Covariates, Weak Curvilinearity, and Choosing Joints / 368

12.4 Transformations of Dependent Variables or Regressors / 369
 12.4.1 Logarithmic Transformation / 370
 12.4.2 The Box-Cox Transformation / 372

12.5 Chapter Summary / 374

13 • Linear Interaction

13.1 Interaction Fundamentals / 377
 13.1.1 Interaction as a Difference in Slope / 377
 13.1.2 Interaction between Two Numerical Regressors / 378
 13.1.3 Interaction versus Intercorrelation / 379
 13.1.4 Simple Linear Interaction / 380
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1.5 Representing Simple Linear Interaction with a Cross-Product</td>
<td>381</td>
</tr>
<tr>
<td>13.1.6 The Symmetry of Interaction</td>
<td>382</td>
</tr>
<tr>
<td>13.1.7 Interaction as a Warped Surface</td>
<td>384</td>
</tr>
<tr>
<td>13.1.8 Covariates in a Regression Model with an Interaction</td>
<td>385</td>
</tr>
<tr>
<td>13.1.9 The Meaning of the Regression Coefficients</td>
<td>385</td>
</tr>
<tr>
<td>13.1.10 An Example with Estimation Using Statistical Software</td>
<td>386</td>
</tr>
<tr>
<td>13.2 Interaction Involving a Categorical Regressor</td>
<td>390</td>
</tr>
<tr>
<td>13.2.1 Interaction between a Dichotomous and a Numerical Regressor</td>
<td>390</td>
</tr>
<tr>
<td>13.2.2 The Meaning of the Regression Coefficients</td>
<td>392</td>
</tr>
<tr>
<td>13.2.3 Interaction Involving a Multicategorical and a Numerical Regressor</td>
<td>394</td>
</tr>
<tr>
<td>13.2.4 Inference When Interaction Requires More Than One Regression Coefficient</td>
<td>397</td>
</tr>
<tr>
<td>13.2.5 A Substantive Example</td>
<td>398</td>
</tr>
<tr>
<td>13.2.6 Interpretation of the Regression Coefficients</td>
<td>402</td>
</tr>
<tr>
<td>13.3 Interaction between Two Categorical Regressors</td>
<td>404</td>
</tr>
<tr>
<td>13.3.1 The 2x2 Design</td>
<td>404</td>
</tr>
<tr>
<td>13.3.2 Interaction between a Dichotomous and q Multicategorical Regressor</td>
<td>407</td>
</tr>
<tr>
<td>13.3.3 Interaction between Two Multicategorical Regressors</td>
<td>408</td>
</tr>
<tr>
<td>13.4 Chapter Summary</td>
<td>408</td>
</tr>
<tr>
<td>14* Probing Interactions and Various Complexities</td>
<td>411</td>
</tr>
<tr>
<td>14.1 Conditional Effects as Functions</td>
<td>411</td>
</tr>
<tr>
<td>14.1.1 When the Interaction Involves Dichotomous or Numerical Variables</td>
<td>412</td>
</tr>
<tr>
<td>14.1.2 When the Interaction Involves a Multicategorical Variable</td>
<td>414</td>
</tr>
<tr>
<td>14.2 Inference about a Conditional Effect</td>
<td>415</td>
</tr>
<tr>
<td>14.2.1 When the Focal Predictor and Moderator Are Numerical or Dichotomous</td>
<td>435</td>
</tr>
<tr>
<td>14.2.2 When the Focal Predictor or Moderator Is Multicategorical</td>
<td>419</td>
</tr>
<tr>
<td>14.3 Probing an Interaction</td>
<td>422</td>
</tr>
<tr>
<td>14.3.1 Examining Conditional Effects at Various Values of the Moderator</td>
<td>423</td>
</tr>
<tr>
<td>14.3.2 The Johnson-Neyman Technique</td>
<td>425</td>
</tr>
<tr>
<td>14.3.3 Testing versus Probing an Interaction</td>
<td>427</td>
</tr>
<tr>
<td>14.3.4 Comparing Conditional Effects</td>
<td>428</td>
</tr>
<tr>
<td>14.4 Complications and Confusions in the Study of Interactions</td>
<td>429</td>
</tr>
<tr>
<td>14.4.1 The Difficulty of Detecting Interactions</td>
<td>429</td>
</tr>
<tr>
<td>14.4.2 Confusing Interaction with Curvilinearity</td>
<td>430</td>
</tr>
<tr>
<td>14.4.3 How the Scaling of Y Affects Interaction</td>
<td>432</td>
</tr>
<tr>
<td>14.4.4 The Interpretation of Lower-Order Regression Coefficients When a Cross-Product Is Present</td>
<td>433</td>
</tr>
<tr>
<td>14.4.5 Some Myths about Testing Interaction</td>
<td>435</td>
</tr>
<tr>
<td>14.4.6 Interaction and Nonsignificant Linear Terms</td>
<td>437</td>
</tr>
<tr>
<td>14.4.7 Homogeneity of Regression in ANCOVA</td>
<td>437</td>
</tr>
<tr>
<td>14.4.8 Multiple, Higher-Order, and Curvilinear Interactions</td>
<td>438</td>
</tr>
<tr>
<td>14.4.9 Artificial Categorization of Continua</td>
<td>441</td>
</tr>
<tr>
<td>14.5 Organizing Tests on Interaction</td>
<td>441</td>
</tr>
<tr>
<td>14.5.1 Three Approaches to Managing Complications</td>
<td>442</td>
</tr>
<tr>
<td>14.5.2 Broad versus Narrow Tests</td>
<td>443</td>
</tr>
<tr>
<td>14.6 Chapter Summary</td>
<td>445</td>
</tr>
<tr>
<td>15 • Mediation and Path Analysis</td>
<td>447</td>
</tr>
<tr>
<td>15.1 Path Analysis and Linear Regression</td>
<td>448</td>
</tr>
<tr>
<td>15.1.1 Direct, Indirect, and Total Effects</td>
<td>448</td>
</tr>
<tr>
<td>15.1.2 The Regression Algebra of Path Analysis</td>
<td>452</td>
</tr>
<tr>
<td>15.1.3 Covariates</td>
<td>454</td>
</tr>
<tr>
<td>15.1.4 Inference about the Total and Direct Effects</td>
<td>455</td>
</tr>
<tr>
<td>15.1.5 Inference about the Indirect Effect</td>
<td>455</td>
</tr>
<tr>
<td>15.1.6 Implementation in Statistical Software</td>
<td>458</td>
</tr>
</tbody>
</table>
Contents

15.2 Multiple Mediator Models / 464
 15.2.1 Path Analysis for a Parallel Multiple Mediator Model / 464
 15.2.2 Path Analysis for a Serial Multiple Mediator Model / 467
15.3 Extensions, Complications, and Miscellaneous Issues / 469
 15.3.1 Causality and Causal Order / 469
 15.3.2 The Causal Steps Approach / 471
 15.3.3 Mediation of a Nonsignificant Total Effect / 472
 15.3.4 Multicategorical Independent Variables / 473
 15.3.5 Fixing Direct Effects to Zero / 474
 15.3.6 Nonlinear Effects / 475
 15.3.7 Moderated Mediation / 475
15.4 Chapter Summary / 476

16 Detecting and Managing Irregularities / 479

16.1 Regression Diagnostics / 480
 16.1.1 Shortcomings of Eyeballing the Data / 481
 16.1.2 Types of Extreme Cases / 482
 16.1.3 Quantifying Leverage, Distance, and Influence / 484
 16.1.4 Using Diagnostic Statistics / 490
 16.1.5 Generating Regression Diagnostics with Computer Software / 494

16.2 Detecting Assumption Violations / 495
 16.2.1 Detecting Nonlinearity / 496
 16.2.2 Detecting Non-Normality / 498
 16.2.3 Detecting Heteroscedasticity / 499
 16.2.4 Testing Assumptions as a Set / 505
 16.2.5 What about Nonindependence? / 506

16.3 Dealing with Irregularities / 509
 16.3.1 Heteroscedasticity-Consistent Standard Errors / 511
 16.3.2 The Jackknife / 512
 16.3.3 Bootstrapping / 512
 16.3.4 Permutation Tests / 513

16.4 Inference without Random Sampling / 514

16.5 Keeping the Diagnostic Analysis Manageable / 516

16.6 Chapter Summary / 517

17 Power, Measurement Error, and Various Miscellaneous Topics / 519

17.1 Power and Precision of Estimation / 519
 17.1.1 Factors Determining Desirable Sample Size / 520
 17.1.2 Revisiting the Standard Error of a Regression Coefficient / 521
 17.1.3 On the Effect of Unnecessary Covariates / 524

17.2 Measurement Error / 525
 17.2.1 What Is Measurement Error? / 525
 17.2.2 Measurement Error in Y / 526
 17.2.3 Measurement Error in Independent Variables / 527
 17.2.4 The Biggest Weakness of Regression: Measurement Error in Covariates / 527
 17.2.5 Summary: The Effects of Measurement Error / 528
 17.2.6 Managing Measurement Error / 530

17.3 An Assortment of Problems / 532
 17.3.1 Violations of the Basic Assumptions / 532
 17.3.2 Collinearity / 532
 17.3.3 Singularity / 534
 17.3.4 Specification Error and Overcontrol / 538
 17.3.5 Noninterval Scaling / 541
 17.3.6 Missing Data / 543
 17.3.7 Rounding Error / 546

17.4 Chapter Summary / 548
Contents

18 • Logistic Regression and Other Linear Models 551

18.1 Logistic Regression / 551
18.1.1 Measuring a Model's Fit to Data / 552
18.1.2 Odds and Logits / 554
18.1.3 The Logistic Regression Equation / 556
18.1.4 An Example with a Single Regressor / 557
18.1.5 Interpretation of and Inference about the Regression Coefficients / 560
18.1.6 Multiple Logistic Regression and Implementation in Computing Software / 562
18.1.7 Measuring and Testing the Fit of the Model / 565
18.1.8 Further Extensions / 568
18.1.9 Discriminant Function Analysis / 568
18.1.10 Using OLS Regression with a Dichotomous Y / 569

18.2 Other Linear Modeling Methods / 570
18.2.1 Ordered Logistic and Probit Regression / 570
18.2.2 Poisson Regression and Related Models of Count Outcomes / 572
18.2.3 Time Series Analysis / 573
18.2.4 Survival Analysis / 573
18.2.5 Structural Equation Modeling / 574
18.2.6 Multilevel Modeling / 575
18.2.7 Other Resources / 577

18.3 Chapter Summary / 578

Appendices

A. The RLM Macro for SPSS and SAS 581
B. Linear Regression Analysis Using R 603
C. Statistical Tables 611
D. The Matrix Algebra of Linear Regression Analysis 621

References 627

Author Index 637

Subject Index 641

About the Authors 661

Data files for the examples used in the book and files containing the SPSS and SAS versions of RLM are available on the companion web page at www.afhayes.com.
In statistics, linear regression is a linear approach to modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable. Regression analysis includes several variations, such as linear, multiple linear, and nonlinear. The most common models are simple linear and multiple linear. Nonlinear regression analysis is commonly used for more complicated data sets in which the dependent and independent variables show a nonlinear relationship. Regression analysis offers numerous applications in various disciplines, including finance. Regression Analysis Linear model assumptions. Linear regression analysis is based on six fundamental assumptions: The dependent and independent variables show a linear relationship between Generally, regression analysis is done for prediction purposes, such that knowing the X parameters you can assume Y parameter which is significantly close to real value. Basically there are two main types of regression: Simple Linear regression. Multiple Linear Regression. Simple Linear Regression defines the relationship between two different variables through a straight line equation which tries to represent the relationship between one dependent and one independent variable. The equation for the simple linear equation is given by: \(Y = a + bX + u \). We build this model quite fast right? Let’s make another multiple linear regression model with a different set of features in the X variable. # Preparing the data. \(X = \text{df[} \text{LSTAT, INDUS, CRIM, NOX, TAX, PTRATIO]} \). 10.4 Analysis-of-Variance Models. III. LINEAR-MODEL DIAGNOSTICS. 11. Unusual and Influential Data. 11.1 Outliers, Leverage, and Influence. V. extending linear and generalized linear models. 16. Time-Series Regression and Generalized Least-Squares. 16.1 Generalized Least-Squares Estimation. 16.2 Serially Correlated Errors. A linear regression model follows a very particular form. In statistics, a regression model is linear when all terms in the model are one of the following: The constant. A parameter multiplied by an independent variable (IV). In a different blog post, I use this model to show how to make predictions with regression analysis. It is a linear model that uses a quadratic (squared) term to model the curved relationship. Nonlinear Regression Equations. I showed how linear regression models have one basic configuration. Now, we’ll focus on the nonlinear! If a regression equation doesn’t follow the rules for a linear model, then it must be a nonlinear model. It’s that simple! A nonlinear model is literally not linear.