
   

  1 

Game Design Patterns 
 Jussi Holopainen1 & Staffan Björk2 

 
1 Nokia Research Center 

Visiokatu 1 
33721 Tampere 

Finland 
jussi.holopainen@nokia.com 

 
2 PLAY, Interactive Institute 

Hugo Grauers gata 3 
411 33 Göteborg 

Sweden 
staffan.bjork@tii.se 

 

Table of Contents 

Introduction ......................................................................................................................... 2 
Why Design Patterns? ........................................................................................................ 3 
Template for Game Design Patterns ............................................................................... 4 
Criticism of Patterns ........................................................................................................... 5 
Using Design Patterns........................................................................................................ 7 
What Design Patterns exist? ............................................................................................. 8 
Creative tool for experimental game design ................................................................ 13 
Bibliography ..................................................................................................................... .14 



Content Patterns in Game Design   

2   

Introduction 

This text is one half of the notes for the “Game Design Patterns” lecture at GDC 
2003. The lecture is the result of the game design community and the research 
community identifying that the development of semi-formal and formal game design 
methods would advance the way game design is discussed. We believe that Game 
Design Patterns offers a viable method to achieve this that can be used both for 
commercial and academic use and can bridge the difference between the two 
communities, allowing them to collaborate and share knowledge to a greater extent 
than before.  

As stated in the lecture description, we believe patterns are only useful as long as 
one can learn and apply them with reasonable effort and that they can be tailored to 
any given project. In other words, patterns need to support practical work such as 
developing the initial game design or problem-solving particular interaction elements 
in a game. Thus, the lecture focuses on practical use, and includes workshop-like 
elements. These notes go beyond the practical use of patterns and discuss more 
general aspects of design patterns, e.g. the choice of pattern definition and the ad-
vantages and disadvantages of pattern use. 

The notes make no attempt at defining a "canonical pattern language". For a lan-
guage to prove its merit, it has to be used and expanded by speakers. Therefore, 
we do not wish to present a complete and finalized collection, or even definition, of 
patterns but instead show our work-in-process so that designers can influence the 
technique to better suit their needs. One structure for patterns is described in this 
text while the other text for the lecture focuses on how to apply patterns as a tech-
nique, creating one’s own set of patterns. These two approaches have been devel-
oped from different perspectives and offer two possibilities for pattern use within 
game design. Further material can be found in the companion material of the GDC 
2002 roundtable (Kreimeier 2002a) about design patterns and in Gamasutra article 
The Case for Game Design Patterns (Kreimeier 2002b). This part of the notes is a 
continuation of work presented at Computer Game Design Patterns workshop 
(Björk&Holopainen 2002). 

If patterns are widely adopted by practitioners and researchers we expect several 
different approaches and pattern collections to appear. Regardless of the specific 
formalism that becomes the norm this can be seen as a success as the game de-
signers and researchers have gained one language to express the knowledge and 
experience contained in the community. 



  Content Patterns in Game Design 

  3 

Why Design Patterns?  

Before presenting the details of our model for using game design patterns, motiva-
tions for using design patterns at all are in place. We believe that the following 
points are valid reasons for using patterns, independently of if one is an experi-
enced project leader leading a large group, a new designer daunted by the task of 
completing one’s first game concept, or an interested hobbyist. 

■ Problem-Solving for Game Interaction Design 

Patterns contain descriptions of identifiable elements of interaction within a game 
together with approaches to ensure the presence of those elements. If one as a de-
signer has a problem with a specific part of the interaction within a game concept, 
the approaches describe in patterns containing the wanted interaction offer several 
potential solutions. 

■ Inspiration 

Having a collection of patterns is in essence having a listing of concepts that other 
game designers have found useful for designing games. Having these concepts at 
one’s fingertips provides a game designer with a knowledge base that can be used 
to find the core of a new game design or tweaks that make a game different. 

■ Creative Design Tool 

The original use of design patterns as described by Alexander et al (Alexander 
1977) was that of a tool that helped designers (architects in this case) to work 
through all levels of a design in a structured fashion. A collection of game design 
patterns can be used in the same way. One begins by selecting a few patterns 
based on the core game concept (and external requirements). These patterns are 
analyzed in the specific context for the designers and potential subpatterns are 
identified. The subpatterns are analyzed and chosen based on their feasibility and 
their subpatterns are identified. This activity goes on recursively until an initial de-
sign has been completed. 

■ Communicating with peers 

Patterns offer definitions of elements found in many games. Describing one’s de-
sign in terms of patterns offers one possibility to describe the design in a standard-
ized format to make the understanding and comparison of different designs easier. 
Further, if readers are unfamiliar with the game concept described by a pattern, the 
definition of the pattern is available in the same sense definitions of words are 
available in a dictionary. 

 

■ Communicating with other professions 

The method of using design patterns have been introduced in a number of disci-
plines, including architecture (Alexander 1977), software engineering (Gamma 
1994), Human-Computer Interaction (Borchers), and Interaction Design (Erickson). 
Although not all of these areas are usually part of the competences of developing a 
game, software engineering and HCI usually are. Using patterns for the design of 
the actual game play can make the transferal between different parts of a project 
group easier as the general working technique is familiar and gaining a basic un-
derstanding of patterns from another discipline is usually easy. 

Template for Game Design Patterns 



Content Patterns in Game Design   

4   

Gamma (1994) quotes Alexander: "Each pattern describes a problem which occurs 
over and over again in our environment, and then describes the core of a solution to 
that problem, in such a way that you can use this solution a million times over, with-
out ever doing it the same way twice" (Alexander 1977). Thus, a pattern can be de-
scribed as an identifiable characteristic that can found in otherwise totally different 
designs. A typical template of a pattern consists of its name, a description of a prob-
lem and its solution together with the consequences of having or applying the pat-
tern. For the design of games, we are currently working with the following template: 

■ Name: Giving short and expressive names to patterns make them possible to use as 
self-sufficient concepts. "Naming a pattern immediately increases our design 
vocabulary. It lets us design at a higher level of abstraction" (Gamma 1994). 
However, naming can be difficult for patterns are connotations can create problems, 
e.g. the pattern Paper-Rock-Scissors describes the strategy of avoiding dominant 
strategies but could easily be thought to describe the act of secretly choosing a 
strategy and simultaneously revealing the choices. 

■ Description: Unlike most design patterns we have chosen not to define patterns as a 
pure problem-solution pairs. This is due to two observations. First, defining patterns 
from problems creates a risk of viewing patterns as a method for only removing 
unwanted effects of a design. In other words, using patterns as a tool for problem-
solving only and not as a tool to support creative design work. Second, many of the 
patterns we have identified described a characteristic that more or less 
automatically guaranteed other characteristics in a game, i.e. the problem described 
in a pattern might easily be solved by applying a more specific subpattern. 

■ Consequences: Each solution has its own trade-offs and consequences. Solutions 
can, in turn, cause or amplify other problems. To take a design decision for or 
against a given solution, its costs and benefits have to be understood and 
compared against those of alternatives. This section describes the likely or possible 
consequences of applying the solution suggested by the pattern. 

■ Using the Pattern: As patterns are general solutions the application of a pattern to 
any given situation requires a number of design choices specific for the current 
context. However, the high-level choices can often be divided into categories. This 
section is used to mention the common choices a designer is faced with when 
applying a pattern, often exemplified by specific game elements from published 
games. 

■ Relations: Here the relations between different game design patterns are stated. 
These are basically three forms of relationship: patterns that are superior in the 
sense that they describe more abstract characteristics (often mentioned in the 
consequences section) and can be implemented by applying the given pattern, 
subpatterns that can be used to implement the given pattern (often mentioned in the 
using the pattern section), and conflicting patterns that are difficult to implement with 
the given pattern. 

Criticism of Patterns 

The use of patterns in other fields have received criticism for several different rea-
sons (being a fad, being too formal, being not formal enough, being too arbitrary) 
and we direct interested readers to the companion material of the GDC 2002 round-
table about design patterns for that discussion (Kreimeier 2002a). However, the use 
of patterns for game design can be criticized for similar reasons as well as reasons 
specific for games. Below we address some of the possible objections to the use of 
pattern in game design.  



  Content Patterns in Game Design 

  5 

■ Patterns a fad 

Question: Patterns have become popularized in other fields, is the use of patterns in 
game design simply a way of taking advantage of that popularity? 

Answer: We believe the strength of design patterns is that they represent a general 
method of helping design processes, in essence helping to define a language for 
specific design fields. Patterns have become popular within other fields only to be 
replaced or challenged by other methods. Whatever the cause for this, e.g. trends 
or the introduction of methods developed specifically for the field, the game com-
munity currently lacks a common language to discuss design. We believe patterns 
may be a solution to this but other solutions may be equally suited, the important 
point is that a solution is found. 

■ Pattern methods too formal 

Question: Doesn’t the formalizing of design processes risks inhibiting the creative 
processes of designers and artists? 

Answer: Design Patterns should be seen as tools; one should only use them as 
long as they are appropriate. By their definition they are open to interpretation, leav-
ing considerable room for creative freedom. Further, they focus on the game inter-
action so that e.g. the actual content creating characterization and narrative struc-
ture is left untouched. 

■ Patterns too abstract 

Question: It doesn’t seem that game design patterns can provide any help with ac-
tually writing code for a game. Aren’t the patterns too abstract? 

Answer: Game Design Patterns deal with the design of games from an interaction 
perspective rather than one of expressing games in programming code. Thus, they 
are by definition more abstract than methods used to formalize game design into 
code and should not be used for that activity. 

■ Patterns not formal enough 

Question: The game design patterns do not seem formal enough to be translated 
e.g. into design patterns for software engineering. Assuming that one has design a 
game and described it through game patterns, what practical use does one have of 
the effort?  

Answer: We do not believe that there is a simple one-to-one mapping from game 
design patterns to design patterns for object-oriented programming. However, hav-
ing a game description using game patterns gives programmers a blueprint ex-
pressed in a form using the same basic structuring model that they use for pro-
gramming. We believe this translation is easier than one from e.g. scenarios or 
story-boards. 

■ Patterns too arbitrary 

Question: How are patterns identified? Is there a formalized selection method? 

Answer: Creating a collection of patterns can be compared to creating a dictionary. 
One has to study how people use words (and decide if they are talking the language 
one is interested in or not). Identified words need to be described and related to 
other words. If the dictionary is to have any influence, it has to be used by the 
practitioners. 

We are currently collecting patterns by studying the use of concepts within the gam-
ing industry. Looking both at computer games and traditional games, we have iden-
tified several patterns (primarily from game genres and game mechanics) by study-



Content Patterns in Game Design   

6   

ing written material about games, interviewing game designers and, of course, play-
ing the games. However, even more patterns have been identified that do not cur-
rently have names; the evidence for these patterns being present in the final game 
designs or the activities of designers. All these patterns are currently in the process 
of being described and analyzed. These will then be presented to the game design 
community as a selection method. Only the patterns that make sense for designers 
and are actually used should be kept. 

Using Design Patterns 

For those that are interested in using game design patterns we can see three impor-
tant questions that may be asked. In this section we try to briefly answer them; other 
questions no doubt will occur for interested parties and we invite you to contact us 
with them.  

■ Do Patterns work for game design?  

It is still too early to answer this question in a meaningful way. That one can use 
game patterns in the design process is apparent but do the benefits of using it sur-
pass the disadvantages? We have tried to identify the possible benefits of design 
patterns as well as locate possible disadvantages and methods for mitigating them 
but until design patterns have been put into wider practical use these are just 
speculations.  

However, we do not believe that the success of game patterns can be measured by 
game sales alone. Instead, we would consider game design patterns as successful 
if individual designers perceive the patterns as helping them in their design process 
as well as in communicating their designs to all the other people involved in the 
process of creating a game. 

■ Do Design Patterns work for all types of games?  

Our collection of patterns has been constructed by looking at different genres within 
computer games, board games and card games. Thus, we believe that patterns 
have a potential for being useful in these areas. Further, one of the research aims of 
our work is to provide a theoretical framework that will help in the design of new 
forms of games, including mobile computer games based on position or context, 
games using new input and output systems, and traditional games augmented with 
embedded computers. 

■ How can I use Design Patterns?  

Contact the presenters by email. We are collecting, defining and analyzing patterns 
in an ongoing process to build a comprehensive collection of interrelated patterns 
for use by practitioners. The patterns have to be validated by actual use to provide 
their worthiness and the only people who can do that are game designers.  

The second alternative is to start from scratch and build your own collection of pat-
terns. This requires more work but allows different starting points; our collections 
start from either user experience or possible interactions but other are possible, e.g. 
manipulation of the game state or components of game engines. 

What Design Patterns exist?  

The simple answer to this question is: any that has been identified. However, what 
useful design patterns exist is a question which is more difficult to answer. We are 
in the process of identifying patterns which we believe are useful either as problem-
solving tools, descriptions of game elements that are useful when analyzing game 



  Content Patterns in Game Design 

  7 

designs, or patterns that we believe support design processes. To do this we have 
studied and played many games (computer games, board games, card games, role-
playing games, etc.) but also interviewed professional game designers. Many pat-
terns have been found or distilled when trying to describe other patterns or to relate 
patterns to each other.  

In this section we present a number of candidates for game design pattern that we 
have identified. Besides describing a number of recurring patterns we have found in 
games they exemplify our approach to using game patterns. The pattern Analysis 
Paralysis described below is included as an example of a category of patterns that 
usually is avoided by game designers (another examples include Invisible Wall and 
King Maker). However, the patterns can easily occur in a game design by mistake 
or by the combined effects of other patterns and thus deserves mention. The use of 
the patterns in a way that makes a game playable may be seen as a design chal-
lenge. 

Note that in examples below the related patterns are in bold and most of the pat-
terns are not described in this paper. 

■ Perceived Chance to Succeed 

Description 

Games usually have the possibility to reach certain goals as one of the primary 
reason for playing them.  A game where the goals are perceived as impossible to 
reach by players often unplayable and the same applies to the game where suc-
cess is always certain. This is especially true for multiplayer games; if after some 
period of time one player is perceived as the only possible winner the game usu-
ally its appeal to the other players. Therefore many games try to let players have a 
perceived chance of winning as long as possible, which includes have a chance to 
succeed with the subgoals necessary to win. 

Consequence 

If a player perceives that he or she always has a chance to reach a goal, although it 
may be minute, it will increase the probability that he or she will struggle against 
the system or the other players. This in turn will increase the tension of the strug-
gle and will make succeeding more rewarding. 

Using the Pattern 

When using this pattern one has to take precautions that how players play does 
not become irrelevant until the very end of the game. Thus, players should feel 
motivated to always do there best as this will improve their chances of winning 
but this chance should not become a certainty until as late as possible in the game. 
Monopoly (Parker Brothers) is an example of a game breaking this pattern as in 
most of the games the winner is clear many turns before the actual end condition. 
Games that use Last Man Standing pattern in victory condition, for example 
Magic: The Gathering (Wizards of the Coast), violate this pattern in such way that 
players are removed from the game one by one until only the winner is left. 

Slowly increasing the difficulty, i.e. providing a Smooth Learning Curve, lets 
player feel that the current subgoal is possible to complete while at the same time 
allowing the player to learn all skills necessary to complete the whole game. For 
examples, a Level-based Game let players feel that they are making progress by 
completing levels where the first levels are usually very easy and the last levels 
impossible for a novice to complete. An interesting subgroup is games where the 
player will always lose the game in the end (Space Invaders, Asteroids, Tetris) but 



Content Patterns in Game Design   

8   

Description 
which still give the player a feeling of having a chance to succeed. This leads to a 
strong 'just one more go' experience. See (Loftus&Loftus 1983) for a discussion of 
a psychological basis of this effect (Partial Reinforcement). 

Balancing Effect can be incorporated into game system to try and compensate for 
unequal player positions. Some games use Dynamical Difficulty Adjustment to, 
for example, making monsters easier to defeat or increasing the number of avail-
able power-ups if the player fails constantly.  Another example is found in many 
racing games where the leading players or computer controlled vehicles are 
automatically slowed down to make it easier for other players to catch up. This 
makes the game more compelling even to the leading player as it heightens the 
perceived Struggle. 

Related patterns 

Superior patterns: - 

Subpatterns: Balancing Effect, Partial Reinforcement, Smooth Learning Curve 

Conflicting patterns: Early Elimination, King Maker, Last Man Standing 

■ Analysis Paralysis 

Description 

Analysis Paralysis occurs when a player is confronted with so many possibilities 
that gaining an overview of what the different consequences will be becomes 
overwhelming and game play is affected negatively. That many possibilities exist 
is not sufficient for the pattern to occur; the player has to have a sense that analyz-
ing the situation is possible and will give the player an advantage over other 
players. 

Consequence  

Analysis Paralysis forces players to spend time on deciding what to do instead of 
interacting with the game system. This may led to experiences that the game does 
not Allow Game Mastery and the Perceived Chance to Win becomes one of pure 
luck.For other players Analysis Paralysis mean that the game does not have Rea-
sonable Waiting Times but may decrease Tension as these players do not have a 
pressure upon them to do something in the game. 

Using the Pattern  

Limiting players� possibilities to analyze a game state can remove the conse-
quences of Analysis Paralysis. Having a Time Limit sets a fixed limit to the 
amount of time that can be spend analyzing a situation while Constant Player 
Activity and Constant Movement forces a player to continuously weigh the bene-
fits of continuing the analysis with reacting to events in the game. All these ap-
proaches do not actually remove the problem of analysis for players but simply 
enforces that action is taken or the players is negatively affected. Gentler ap-
proaches, which do not threaten with punishments, are possible by enforcing a 
Limited Foresight so that the consequences of actions are more difficult to calcu-
late. 

Analysis Paralysis may be mitigated for other players by giving them purposeful 
things to do while a player is thinking which does not actually affect the game 
state. Different forms of Stimulated Social Interaction are likely candidates: al-



  Content Patterns in Game Design 

  9 

Description 
lowing communication for negotiation of tactics or alliances or out-of-game con-
versations. Other examples are support for studying the game rules or training 
various aspects of a game while waiting. 

Relationships 

Superior patterns: - 

Subpatterns: - 

Conflicting patterns: Reasonable Waiting Times, Allow Game Mastery, Reason-
able Waiting Times  

■ Mutual Goal 

Description 

The players, or some of players, try to reach the same goal or subgoal within the 
game. This pattern occurs whenever more than one player has exactly the same 
goal, e.g. "we both want the red car to come first" and not "we both want our re-
spective cars to come first" (which are Symmetrical Goals).  

Consequence 

Defining a victory condition for several players by giving them a mutual goal 
creates Team Play. Mutual goals that are subgoals in a game can either be used to 
strengthen the advantages of cooperating within a team or be used to create a 
Temporary Alliance between players. In all cases, the mutual goals promote 
Stimulated Social Interaction. 

Using the Pattern 
Just as any kind of goal, mutual goals can either be Predefined Goals that are 
either known or unknown (Unknown Goals) before game play begins or goals 
that are Player-Constructed Closures with rewards defined by the players. An 
example of the latter is Diplomacy (Avalon Hill) where players can negotiate and 
define own Mutual Goals ranging from simple 'support this unit' to far ranging 
'defend Italy'. 

Mutual goals that are unknown may either be unknown to the other players or 
the players having the goals. In the first case this leads to Secret Collaboration 
which the other players try to disclose while in the second case the players have 
Unknown Allies and one part of the game is to determine who is on your side 
without revealing your intentions to the other players. One example of this is 
Royal Turf (Reiner Knizia, Alea 2001) where money is won by betting on the out-
come of a horse race. Once a secret betting is done, players take turns moving the 
horses around the track. Only moving the horse one has bet on gives away ones 
strategy but at the same time one would like to identify other players that have 
bet on the same horse in order to cooperate. 

The division of rewards (if any) from a mutual goals is vital for the level of coop-
eration between players. Individual Rewards can create Tension as players com-
pete to be the first to achieve a given game state while Shared Rewards promote 
cooperation depending on the exact sharing procedure. One example of the latter 
which promotes cooperation is automated distribution of experience points or 
gold in role-playing games (although the distribution of magical items typically is 
up to the players). In the case where the reward is vaguely defined, e.g. the mu-



Content Patterns in Game Design   

10   

Description 
tual goals in Diplomacy, the mutual goal can lead to Tension between the players 
as the value of the goal for the other players, and thereby the effort they will put 
into fulfilling the goal, is difficult to judge. 

If the players can negotiate the other players participating in the mutual goal can 
lead to a Balancing Effect since players lagging behind are more likely to form 
temporary alliances against the current leaders. This, however, is heavily influ-
enced by the distribution function of Shared Rewards. 

Relationships 

Superior patterns: Team Play, Temporary Alliance, Stimulated Social Interac-
tion, Narrative Structure, Punctuated Equilibrium 

Subpatterns: Predefined Goals, Unknown Goals, Player-Constructed Closures , 
Secret Collaboration, Unknown Allies, Individual Reward, Shared Reward, 
Balancing Effect  

Conflicting patterns: Asymmetrical Goals, Symmetrical Goals 

■ Shared Reward 

Description 

The players which have been involved in some way in reaching a closure in the 
game usually share some form of reward. It is not necessary for all the players 
sharing the rewards to actually cooperate as in some cases other players can, for 
example, bet on the result of an adventuring party on a quest.  

Consequence 

Shared rewards opens up a number of possibilities for player interaction. In the 
case of the shared reward being the achieved by Collaboration, the shared re-
ward gives players a Mutual Goal and promotes Stimulated Social Interaction. 
In the case where the reward has to be shared between players the pattern en-
courages Competition between the players. Further, rewards that can be shared 
between competitors have a certain Balancing Effect as the reward does not bene-
fit only one player. This is especially true in situations where players have to 
choose whom to share the reward with; one usually chooses the player that is 
furthest from winning. 

Using the Pattern 

The use of shared rewards greatly depends on whether the size and distribution 
of the reward is set or it is depending on the game state. If a player gets the same 
quantitative reward regardless of the number of other players sharing the reward 
the player does not lose anything by cooperating. This however requires an 
Unlimited Resource Pool, at least during the actual reward distribution and can 
lead to Inflation. 

If the size of the reward is fixed (Limited Resource Pool), players have to com-
pete against each other to receive as large part of it as possible. How the distribu-
tion function is defined greatly influences game play for these kinds of rewards: a 
first-come-first-served function creates a Race, distribution of rewards based on 
chance promotes Investment, predetermined relationships between shares and 
reward encourages struggles with a set Time Limit when the reward is distrib-
uted. In the last case Geometrical Reward for Investments creates more competi-



  Content Patterns in Game Design 

  11 

Description 
tion than Arithmetical Reward for Investments. Note that the number of shares 
does not need to be fixed even though the size of the reward is fixed. 

How players receive shares of the reward can either be by merit or by concession. 
For players to receive shares by merit simply means that they have to fulfill cer-
tain criteria to be entitled to a share, e.g. having stock in a company. Shared by 
concession means that players have to give away parts of a reward to other play-
ers in order to get their part. For example, the board game Kohle, Kies & Knete (Sid 
Sackson, Schmidt Spiele 1994) is a game of making deals where each deal gives a 
certain amount of money. However, deals can rarely be closed by only one player 
and the lead player of a deal will have to seek help from the other players in ex-
change for a piece of the payoff. 

The actual content of the shared reward can be the results of the process of nega-
tion between players. An example of this is Trading, which can be seen as a 
shared reward since the players that trade get a benefit over those players who 
weren't a part of that trade. In trading rules that allow for Bluffing, the actual 
content of the shared reward is uncertain creating Uncertain Reward.  

Relationships 

Superior patterns: Stimulated Social Interaction, Collaboration, Mutual Goal, 
Competition, Balancing Effect 

 Subpatterns: Trading, Geometrical Reward for Investments, Arithmetical Re-
ward for Investments 

Conflicting patterns: Individual Reward 

 



Content Patterns in Game Design   

12   

Creative tool for experimental game design 

As has been mentioned earlier in the text, we believe that patterns can be used not 
only to analyze existing games but also to assist in the design process itself. One of 
the benefits of using patterns is that the designer is able to formulate the design 
problem in a clear and consistent way thus giving the opportunity to consciously 
make different kinds of design decisions than in the previous games.  

This is especially important in what can be called experimental game design (see 
http://www.experimental-gameplay.com) where the goal is to create games that 
break the traditional genres, themes, or game styles of existing games. It is easier 
to innovate and experiment when the basic elements and building blocks are known 
and formalized to some extent, even if the innovation lies in not using a well-known 
game element but instead trying out the opposite. One example of how this can be 
done is given below, describing how one of the authors designed a prototype of a 
small multiplayer game for mobile phones. Design patterns are indicated with bold 
type. 

The main design requirement was that the game should have Stimulated Social 
Interaction between players. This pattern has Trading as a subpattern, given that if 
players have to trade with each other they have to communicate which easily can 
turn from purely formal communication to social interaction. In order to have some-
thing to trade the Source/Sink pattern was used to define the basic game mechan-
ics. As the game was required to be simple only four different resource types were 
defined. The pattern version of Asymmetric Distribution (Falstein 2002) was used 
in resource generation, the Source part of Source/Sink pattern, in such way that 
for each of the players it was randomly biased to one of the resource types. This, 
combined with the design decision that the players needed all resource types 
roughly equally to succeed in game, the Sink part of the Source/Sink pattern, lead 
to the situation where trading and haggling were necessary parts of game play.  

Trading, however, was considered not to be enough so Mutual Goals and Shared 
Rewards patterns, also subpatterns of Stimulated Social Interaction, were used 
to create a system where players have the same or supporting subgoals and that 
players shared the rewards of reaching the goals. In this case the reward was sim-
ple victory points.  

The Bluffing pattern was used to create more Tension between the players. The 
players now secretly selected their own goals from a set that ensured that the there 
was sufficient overlap. The selection was also connected to the resource generation 
in a way that made it impossible for a single player to reach any of the goals single 
handedly. Thus, the game design requires players to cooperate but also makes it 
possible to trick other players to use their resources for your own good. 

Several other patterns for multiplayer games, such as Spectators, Voting and Per-
sonalization, were used in the creation of the final design. At least in this experi-
ment, even the preliminary patterns were very helpful in the design process. More 
information about the final design is available from Jussi Holopainen, see above for 
contact information. 

Bibliography 

 
Alexander, C. et al. (1977): A Pattern Language: Towns, Buildings, Construction. 
Oxford University Press. 



  Content Patterns in Game Design 

  13 

Björk, Staffan & Holopainen, Jussi: Computer Game Design Patterns. One-day 
workshop Computer Games & Digital Textualities 2002 conference, Tampere, 
Finland. 

Borchers, Jan: The HCI Patterns Pages. 
http://www.stanford.edu/~borchers/hcipatterns/ 

Erickson, Tom: The Interaction Design Patterns Page: 
http://www.pliant.org/personal/Tom_Erickson/InteractionPatterns.html 

Falstein, Noah (2002): Better by Design: Asymmetrical Distribution in Game Devel-
oper Magazine, August 2002. 

Gamma, E. et al. (1994): Design Patterns: Elements of Reusable Object-Oriented 
Software. Addison Wesley Longman 

Kreimeier, B. (2002a): Content Patterns in Game Design. GDC 2002 Roundtable. 
http://www.onearrow.org/game/pattern/ 

Kreimeier, B. (2002b): The Case for Game Design Patterns. 
http://www.gamasutra.com/features/20020313/kreimeier_01.htm 

Loftus, Geoffrey R. & Elizabeth F Loftus (1983): Mind at Play: The Psychology of 
Video Games. New York: Basic Books 

 



Pattern Practice 
A Supplement to the "Game Design Patterns" 

GDC 2003 combined lectures by Bernd Kreimeier, Jussi Holopainen, Staffan Björk 
Supplement by Bernd Kreimeier 

 
 
Extended Abstract 
 
There is a wide consensus in the game design community that semi-formal or even 
formal game design methods must be developed (see e.g. the GDC 2002 roundtable 
discussion on "Game Design Patterns" [5] as well as the "400 Project" started at GDC 
2001 [9], as well as Doug Church's "Formal Abstract Design Tools" [10]). We must 
advance the way we discuss game design details. However, at this time it is not clear 
which, if any, of the approaches proposed to date are best suited for practical use in the 
game development process. 
 
Some game industry professionals already use derivatives of Alexandrian "Design 
Patterns", usually in the context of software engineering. Christopher Alexander's 
original pattern language has also been referred to in discussing level design and level 
architecture (see [4] for details and references). Patterns are also used by parts of the 
research community concerned with Human-Computer Interaction (HCI), of which 
games (or at least the design and analysis of game User Interfaces) can be considered a 
specialization. (For a HCI perspective on patterns see e.g. [7] by Sally Fincher.) The 
work by Microsoft Game Studios' User Testing group (see [2] for an introduction) is also 
oriented within an HCI context [1]. The connection between HCI problems and game 
design issues is not a recent insight: witness the popularity of Brenda Laurel's 
"Computers as Theatre" [3] within parts of the game designer community. 
 
The authors propose the use of "Game Design Patterns" [4,6] as a tool to analyze, 
document, and discuss game design techniques and recurring game elements. The game 
design pattern approach is loosely based on Alexander's work, but deviates from it in 
several ways essential ways. While pattern-based methods can be used to express 
imperatives (see e.g. the normative rules of the "400 Project"), one important advantage 
is their adaptability to the specific needs of a given team or project. The lecture focuses 
on patterns as a method. Individual patterns, and small pattern collections, will be 
discussed as examples, but no attempt at defining a "canonical pattern language" is made. 
There is a variety of game genres, and within each genre, a variety of game design 
philosophies that make it difficult, possibly counterproductive, to attempt to define a 
pattern collection that could serve so manifold objectives without becoming unwieldy. 
 
 
Pattern Practice 
 
Patterns, like any semi-formal method, are only useful as long as reasonable efforts to 
memorize and apply them suffice. Furthermore, in an artistic context, patterns can be 
very specific to the project or the individuals involved. Consequently, the lecture focuses 



on methods to recognize and harvest patterns, on how to define and refine them for 
documentation, how to document them, and on their application within small groups. The 
resulting pattern languages should assist the designers in their day-to-day design work, 
first as tools to document and evaluate designs, and last, but certainly not least, to enable 
designers to consciously expand the design spaces of computer games.  
 
Pattern-based methods (in game design) are in their infancy. However, even experienced 
game designers might find the different perspective offered by pattern-based approaches 
helpful for their own attempts to develop and improve other formal methods (like FADTs 
or rules).  Ultimately, any practical application of patterns requires the individual 
designer to define and use design patterns in their day-to-day work, as a semi-formal, 
flexible method to express, evaluate and reflect upon design choices both within the 
team, and with others outside the development group. Fincher [7] points out that 
Alexander specifically intended patterns to permit communication between designers (in 
his domain, architects) and users. For practical purposes of game development, 
communication with the programming and engineering members of the team, as well as 
communication with formal User Testing [2] (or more informal user feedback/playtest) 
groups, as well as communication with production (see also [8]) and management, could 
potentially benefit from pattern-based documentation and methodology. 
 
Aspects of practical pattern use to be covered in the lecture include the issue of 
harvesting/mining for patterns ("in every cliché hides a pattern waiting to be 
understood"), and issues of documenting and discussing patterns: 
 
- Pattern writing process [13,17] 
- Pattern writing styles [12,14] 
- Pattern writing templates [4,6] 
- Minimal mnemonic representation 

vs. Use-centered reference 
vs. Full pattern documentation 

- Pattern misconceptions [15] 
 
Specific to the efforts aiming at game design patterns are the topics of: 
 
- Anecdoctical representation of knowledge 
- Empiric data and patterns: observation vs. "best practice" 
 
- Pattern names and forms: object-centric vs. problem-centric 
- Purpose vs. effects 
- Pattern categories: spatial vs. behavioral 
 
- Levels of abstraction: building blocks or guiding principles 
- Hierarchy, alternative solutions, aggregation, dependencies 
- Composite patterns 
 
- Patterns as narrative  [11] 



- Pattern extraction from walkthroughs 
- Pattern extraction from project post-mortems [4] 
- Pattern mining by introspection [16] 
- Pattern review (e.g. [17]) 
 
Of particular interest are the differences between the rule based approach of the "400" 
project [9] and a pattern approach: 
 
- Pattern made from rules 
- Patterns formulated as rules 
- Patters vs. rules: trade-offs vs. trumping hierarchy 
 
Comparisons between FADTs and patterns can also serve to better understand either 
approach. Other possible topics include support for structured editing by off-the-shelf 
(e.g. XML) tools, pattern review by inversion, use of patterns as creative (i.e. 
exploratory) tools, as well as patterns as a tool for introspection. 
 
 
Outlook 
 
The combined lectures on "Game Design Patterns" and the IGDA roundtable on "Game 
Design Methods" at GDC 2003 complement each other in an attempt to advance the 
discussion of how to develop formal, abstract tools for game design, a discourse if not 
begun, then made explicit by Doug Church in 1999 (see [10]). The authors believe that 
among the approaches proposed to date, patterns offer the most flexibility and versatility 
to accommodate the wide spectrum defined by different genres, different design 
objectives and philosophies, and the different levels of abstraction to match the varying 
needs of pre-production and core production of an increasingly complex (and 
increasingly expensive) development process. 
 
 
Note: an updated version of this document, as well as other documents related to the 
GDC 2002 and 2003 roundtables, can be found at: 
http://www.oneArrow.org/pattern/game/, as well as on the official GDC website at 
http://www.gdconf.com/. 
 
 
 
 
References 
 
[1] Randy J. Pagulayan, K Keeker, D. Wixon, R.L. Romero and T. Fuller, "User-
Centered Design in Games", In: J.A. Jacko and A. Sears (eds.), "The Human-Computer 
Interaction handbook: Fundamentals, Evolving Technologies and Emerging 
Applications". Lawrence Erlbaum Assoc., 2003. ISBN 0-805-83838-4 
 



[2] Bill Fulton, "Beyond Psychological Theory: Getting Data that Improves Games". 
Game Developer's Conference 2002 Proceedings, San Jose CA, March 2002.  
See http://www.gamasutra.com/gdc2002/features/fulton/fulton_01.htm  
and http://www.gamasutra.com/gdce/2002/bill_fulton.zip  
 
[3] Brenda Laurel, "Computers as Theatre", Addison Wesley Longman Inc. 1991, 1993 
ISBN 0-201-55060-1. 
 
[4] Bernd Kreimeier, "The Case for Game Design Patterns". 
See http://www.gamasutra.com/features/20020313/kreimeier_pfv.htm  
 
[5] Bernd Kreimeier, "Game Pesign Patterns", supplement to GDC 2002 roundtable, 
GDC 2002 proceedings CDROM, see also http://www.oneArrow.org/game/pattern/  
 
[6] Jussi Holopainen and Staffan Bj"ork", "Game Design Patterns", GDC 2003 lecture, 
Proceedings CD ROM. 
 
[7] Sally Fincher, "Patterns for HCI and Cognitive Dimensions: two halves of the same 
story?" 
Submitted to 14th annual PPIG workshop, 2003. 
See http://www.pliant.org/personal/Tom_Erickson/FincherOnPatterns.pdf  
 
[8] Mark Cerny, "Method". GDCE 2002 Web Lecture 
See http://www.gamasutra.com/features/slides/cerny/index.htm  
also http://www.gamasutra.com/gdce/2002/mark_cerny.zip  
 
[9] Noah Falstein. "Better By Design: The 400 Project". (Game Developer magazine, 
Vol. 9, Issue 3, March 2002, p. 26.)  
 
[10] Doug Church. "Formal Abstract Design Tools." (Gamasutra, 1999. Originally Game 
Developer magazine, Vol 3, Issue 28, July 1999.) 
See http://www.gamasutra.com/features/19990716/design_tools_01.htm  
 
[11] Andrew Rollings and Dave Morris. Game Architecture and Design. (The Coriolis 
Group, 2000.) ISBN 1-57610-425-7 
 
[12] Aamod Sane "The Elements of Pattern Style." December 1995. 
See http://choices.cs.uiuc.edu/sane/elem.pdf 
 
[13] John Vlissides. "Pattern Hatching - Seven Habits of Successful Pattern Writers." 
C++ Report. Nov/Dec 1996, and Pattern Hatching: Design Patterns Applied (Addison 
Wesley, 1998). 
 
[14] Gerard Meszaros and Jim Doble "A Pattern Language for Pattern Writing" 
See http://hillside.net/patterns/writing/patternwritingpaper.htm 
 

#
#
#
#
#
#
#
#


[15] John Vlissides. "Patterns: The Top Ten Misconceptions". Object Magazine, March 
1997. See http://www.research.ibm.com/designpatterns/pubs/top10misc.html  
 
[16] NN. "TIES Patterns- Pattern Mining". From Jim Coplien's pattern writer's workshop. 
See http://hillside.net/patterns/patternsmining.htm  
 
[17] Doug Lea, "Pattern Checklist" See http://hillside.net/patterns/writing/checklist.htm  
See http://hillside.net/patterns/writing/checklist.htm  
 
 
 
 
 
 
Speaker Info 
 
Staffan Björk 
Staffan Björk is a Ph.D. in informatics with a background in computing science. He was 
one of the initial members of the PLAY group of the Interactive Institute in Sweden and 
has been director for the studio since the autumn of 2001. His research interests include 
design patterns in games, ubiquitous computing, information visualization, and the use of 
emergent narratives in computer entertainment. His work has been published in 
SIGGRAPH, ACM CHI, ACM UIST, IEEE Information Visualization, IEEE ISWC, 
HUC (now UbiComp), AVI and Interact. He is currently co-chair for the Short Talks & 
Interactive Posters at SIGCHI 2003, Community of Practive Liaison for the Games 
Community for the CHI 2003 conference, one of the guest editors for a special issue on 
Ubiquitous Games in the journal Personal and Ubiquitous Computing, and a member of 
the executive board of Digital Games Research Association (see http://www.digra.org). 
 
Jussi Holopainen 
Jussi Holopainen is a Research Scientist at the Visual Communications Laboratory of 
Nokia Research Center in Finland. His research interests include entertainment 
applications for wearable and mobile devices, as well as the aesthetical foundations of 
game design process. His work has been presented at HUC (Handheld and Ubiquitous 
Computing), ISWC (International Symposium on Wearable Computing), E-Culture Fair 
(in conjunction with Doors of Perception), Consciousness Reframed, SIGGRAPH and 
UbiComp. He is also one of the organizers of Jyväskylä Arts Festival, a member of the 
programme committee for Computer Games & Digital Cultures conference, one of the 
guest editors for a special issue on Ubiquitous Games in the journal Personal and 
Ubiquitous Computing, and a member of the executive board of Digital Games Research 
Association (see http://www.digra.org). 
 
Bernd Kreimeier 
Bernd Kreimeier is a writer, physicist, and coder, currently employed as a Senior 
Programmer for a game development studio in California. He has pursued the topic of 
game design patterns since 1997, and is currently working on a related book to be 

#


published by Wordware in 2003. His credits include Linux ports of Heretic2 and Quake3; 
Team Arena; as well as an Xbox launch title. He has lectured at GDC in 2001 and 
moderated a GDC Roundtable on Game Design Patterns in 2002, and has been published 
in Game Developer Magazine and on Gamasutra. He has the equivalent of a masters 
degree in experimental physics from the University of Dortmund in Germany, and served 
as research and teaching staff member at the Universities of Duesseldorf and Bonn. He 
has published several novels and short stories in the german language. 
 
 



       

The Case For Game 
Design Patterns 

 
By Bernd Kreimeier 
Gamasutra  
March 13, 2002 
 
URL: http://www.gamasutra.com/features/20020313/kreimeier_01.htm 

Game design, like any other profession, requires a formal means to document, discuss, and plan. 
Over the past decades, the designer community could refer to a steadily growing body of past 
computer games for ideas and inspiration. Knowledge was also extracted from the analysis of 
board games and other classical games, and from the rigorous formal analysis found in 
mathematical game theory. 

However, while knowledge about computer games has grown rapidly, little progress has made to 
document our individual experiences and knowledge - documentation that is mandatory if the 
game design profession is to advance. Game design needs a shared vocabulary to name the 
objects and structures we are creating and shaping, and a set of rules to express how these 
building blocks fit together.  

This article proposes to adopt a pattern formalism for game design, based on the work of 
Christopher Alexander. Alexandrian patterns are simple collections of reusable solutions to solve 
recurring problems. Doug Church's "Formal Abstract Design Tools" [11] or Hal Barwood's "400 
Design Rules" [6,7,18] have the same objective: to establish a formal means of describing, sharing 
and expanding knowledge about game design.  

From the very first interactive computer games, game designers have worked around this 
deficiency by relying on techniques and tools borrowed from other, older media -- predominantly 
tools for describing narrative media like cinematography, scriptwriting and storytelling. Computer 
games are a visual medium, and game designers are increasingly relying on design techniques 
developed for movies - to the detriment of efforts to identify methods genuinely suited for game 
design. The discussion of narrative techniques has come to dominate the discourse on game 
design, almost extinguishing alternatives.  

If the techniques borrowed from other media were sufficient to express and address game design 
issues, there would be no need to search for alternatives. However, the metaphors and devices 
borrowed from narrative media are usually insufficient (or even inadequate) to capture the essence 
of the interactive game medium. The community is aware of this [12], although the response is 
often an attempt to reconcile the contradiction by redefining the term "narrative" [24]. Taken to the 
extreme of an artificial playwright [23], this constitutes proposing a technological solution to a 
conceptual problem. The real issue is not the shortcomings of narrative techniques with respect to 
their utility in game design, but the lack of techniques genuinely suited for interactive media. 

The game design pattern method proposed here is concerned with content patterns, as opposed to 
software engineering patterns [19], specializations of which that have been proposed for game 



programming [33,20]. Similarly, process patterns to organize and manage game development 
projects (such patterns could be extracted from [17,28]) are beyond the scope of this article.  

What Are Patterns?  

In a nutshell, patterns are simply conventions for describing and documenting recurring design 
decisions within a given context, be it game design or software engineering. Specific patterns are 
the result of applying this method consistently, leading to collections of design patterns which have 
been assigned a name and are documented by an anecdotal or abstract description. Pattern 
methods provide semi-formal tools for problem domains in which rigorously formal methods cannot 
easily be applied, or are simply not available or even conceivable.  

Patterns are traditionally expressions of problem-oriented thinking. The seminal book by Gamma et 
al., Design Patterns: Elements of Reusable Object-Oriented Software, quotes Alexander  [3]: "Each 
pattern describes a problem which occurs over and over again in our environment, and then 
describes the core of a solution to that problem, in such a way that can you can use this solution a 
million times over, without ever doing it the same way twice." There can be several alternative 
solutions to a given problem, each one defining its own pattern, but the combination of problem 
statement and solution proposal is the essence of any Alexandrian pattern. 

A game design pattern collection would provide a shared design vocabulary that allows experienced 
designers to: 

l communicate efficiently with each other, with less experienced designers, and with members 
of other professions (like software engineers and game coders)  

l document their insights, organizing individual experience as written knowledge  
l analyze their own design as well as the designs of others, e.g. for purposes of comparative 

criticism, re -engineering, or maintenance  

It is important to distinguish between pattern-based methods, which are very generic and general, 
and specific pattern collections created for a given purpose. The decision to use patterns merely 
determines form, not content. The conventions of any pattern template do not guarantee (or 
prohibit) that useful patterns will be found and documented. Pattern methods are simply a 
successful way to express existing knowledge. 

A Pattern Template 

Pattern templates typically contain these four essential elements:  

1. Name. "Naming a pattern immediately increases our design vocabulary. It lets us design at a 
higher level of abstraction". Names have to be mnemonic and evocative, but the 
connotations also pose problems. "Also Known As", frequently part of pattern templates, is 
actually an indication of a naming problem: "Finding good names has been one of the 
hardest parts of developing our catalog" (again, Erich Gamma et al.).  

2. Problem. This describes the problem, including its inherent trade-offs and the context in 
which the problem occurs. The description of the problem implies a goal that we want to 
accomplish, and the obstacles we encounter when we attempt to do so.  

3. Solution.  A description of a general arrangement of entities and mechanisms that can be 
used to solve the problem. This is not a particular design or concrete implementation, but an 
abstract structure that describes an entire family of solutions that are essentially the same.  

4. Consequences. Each solution has its own trade offs and consequences. Solutions can, in 
turn, cause or amplify other problems. The costs and benefits of a solution should be 
understood and compared against those of alternatives before making a design decision. 



Around this essential core, pattern templates often add other elements, or subdivide a core 
element.  
 
Gamma et.al. uses Name - Intent - Aliases - Motivation - Applicability - Structure - Participants - Collaborations - 
Consequences - Implementation - Sample - Known Uses - Related Patterns . Meszaros and Doble describe pattern writing 
itself in patterns organized as Title - Problem - Context - Forces - Solution - Indications - Resulting Context - Related 
Patterns - Examples - Samples - Rationale - Aliases - Acknowledgements [25]. Alexander et. al. use Name - Example as 
Picture - Context within larger patterns - Problem - Solution - Solution as Diagram - Relation to smaller patterns [3]. 
Ultimately, the details of the format chosen do not matter as much as the fact that one format has been elected and is used 

consistently (for more details on how to write patterns, see [31,34,5]).  

Pattern Examples 

To show the method in action, let's look at some pattern candidates. The following examples are 
admittedly very simple, and weren't selected necessarily for their particular relevance to game 
design.  

PROXY 

Problem: It might not be possible or desirable to 
require that a game action is applied to the target 
object directly. In other words, we have to avoid 
proximity to or collision with the ultimate target of 
a given action.  

Solution: Introduce another entity (object) that is 
used as a proxy, standing in for the target object. 
The proxy can be placed and moved independently of the 
target object or objects. The restrictions that apply 
to the target(s) do not by default apply to the proxy. 
Multiple proxies can be used for the same target or 
targets.  

Consequence: The link between the proxy and the actual 
target has to be communicated to the player, if the 
player is supposed to exploit this connection and 
indirection. Restrictions on placement of proxy and 
target with respect to player field of view, and 
restrictions on player view control might apply, to 
ensure that the player perceives the effect on the 
target.  

Examples: Munch's Oddyssee has several proxies for the 
player characters: the possession orb which enables 
Abe to take over other game characters (thus turning 
them into proxies), and the Snoozer robot and H-Crane, 
which served as proxies for Munch. One benefit of 
player character proxies is that of a safe death: 
loosing a proxy does not end the game. 
Buttons/Switches/Levers that open doors or start/stop 
machinery are often placed in different locations, 
instead of being part of the target object. In these 
cases, the designer wants to separate trigger from 
target to permit more elaborate puzzles. Half-Life's 
final boss had a vulnerable location inside its head. 
That vulnerable spot could be considered a proxy for 
the entire (invulnerable) boss. As a second order 
vulnerability, the boss was dependent on three 



PROXY was chosen to illustrate potential problems in using the same name for different patterns 
existing in different contexts. There is a software engineering pattern with the same name, 
introduced by Gamma et al. However, there is no meaningful connection between the two 
concepts. On the other hand, in some cases a given pattern language might translate into a 
sensible OOP implementation hierarchy, if there is a correspondence between the purpose of a 
given game design entity within the design context, and its implementation in the software that 
constitutes the game engine. 

crystals that supplied energy for healing and attack. 
Attacking the crystals destroyed them, thus permitting 
effective attacks on the boss monster itself.  

PREDICTABLE CONSEQUENCE 

Problem: The player has to perceive failure as a 
consequence of her mistakes, not as a random or 
predestined event unrelated to, and unavoidable by, 
any reasonable choice of actions on her part.  

Solution: The player cannot take a meaningful decision 
to act (or not to act) if the result of a possible 
action can not be anticipated. A meaningful player 
decision is an informed decision: she has to be able 
to guess the result of her action before she ever 
takes it. Choose game mechanisms that communicate 
predictable behavior by visual appearance relying on 
knowledge the player already has (either from real 
world experience, or from experience with other games, 
or from experience with preceding parts of your game). 
Do not break consistency of your visual language, i.e. 
make sure that objects that behave identical look 
identical.  

Consequence: It is no longer possible to implement 
surprises that are impossible to anticipate. The 
player might rely on the out-of-context assurance to 
anticipate the designer's ambush, and either outwit 
the designer, or find herself locked into performing 
an action against her better judgment as the designer 
has prevented alternative courses of action. 
Ultimately, the designer might arrange for actions 
that the informed player will never perform, as they 
are predictably to her disadvantage. The designer 
might have to go to considerable length to communicate 
the rules that govern the outcome of actions, to the 
player. The design might be biased towards using 
mechanisms resembling real world objects, to minimize 
the need for explanations. A lack of uncertainty on 
the player's side makes the game more transparent, 
potentially removing the need for exploration and 
experimentation. Ultimately, the need for Predictable 
Consequence is determined by the need for backtracking 
(severity of failure) and costs of backtracking 
(latency between choice and consequence, see also 
behavioral science on timing issues). Another possible 
consequence is that the design might have to restrict 
itself to a smaller set of player actions, in order to 
be able to enable them consistently throughout the 



PREDICTABLE CONSEQUENCE is my rewrite of FADT "Perceivable Consequence" introduced by 
Doug Church (see [11] for the original description). Aside from changes to the description itself to 
refine its meaning (as I perceived it), this pattern candidate illustrates that FADTs can expressed 
as patterns. 

game world. Actions only available once or in a very 
few locations do not amortize the costs of 
communication and teaching/learning on the 
designer's/player's part. The design might also have 
to exaggerate the differences between distinct objects 
to avoid ambiguities. Any kind of variation or range 
has to follow rules that can easily be observed and 
complied with.  

Examples: Doug Church's article relied on Mario 64 as 
the textbook example [11] of predictable consequence. 
This pattern could be applied to any game with a 
consistent physics approximation, such those exhibited 
by bouncing grenades in FPS games. Other examples 
include crates and barrels that are marked as 
explosive actually explode, fireballs that hurt a 
player when they hit, burning fire, water that drowns 
if you do not swim, and lava which kills. Counter-
examples are plentiful: switches and buttons that say 
"Push Me" to unleash a necessary ambush (an ambush 
that also opens the only way to move on) anticipated 
only as such. Openings in which to jump without 
knowing what is on the other side such as those found 
in Opposing Force and Ico. This is often a necessity 
imposed by the level partition/transition mechanism 
the engine uses.  

References: Doug Church introduced the concept of 
perceived/perceivable consequence [11], which he uses 
also do describe predictable outcomes. There is a 
difference between the requirement for immediate 
feedback that the player can connect to her actions, 
and the requirement that the player has to have a 
chance to anticipate the likely outcome of her action. 
This pattern was derived from the latter, the former 
would require another pattern.  

PAPER-ROCK-SCISSORS 

Problem: Avoid a dominant strategy that makes player 
decisions a trivial choice.  

Solution: Introduce nontransitive relationships within 
a set of alternatives, as in the game of paper-rock-
scissors.  

Consequence: The player is no longer able to find a 
single strategy that will be optimal in all situations 
and under all circumstances. She has to revisit her 
decisions, and, depending on the constraints imposed 
by the game, adjust to changing situations, or suffer 
the consequences of an earlier decision.  



PAPER-ROCK-SCISSORS is a recurring game design device that may have been the very first to be 
semi-formally described. It can also be presented as a pattern. There is no new information in this 
rewrite; the existing knowledge has merely been reorganized to match the other examples. The 
pattern could be extended to include a description of payoff matrices and examples for sets larger 
than three (see [28] for such a discussion), but even the minimal description captures its essence.  

Examples: The example given by Andrew Rollings is the 
set of warrior-barbarian-archer from the Dave and 
Barry Murray game The Ancient Art of War (Broderbund 
1984). He also describes Quake's weapon/monster 
relations in similar terms: Nailgun beats shambler, 
shambler beats rocket launcher, rocket launcher beats 
zombie, zombie beats nailgun [28].  

References: Chris Crawford (see "Triangularity" in 
[15]) provided the first explicit description of the 
use of nontransitive relationships. Andrew Rollings' 
discussion of examples uses game theory including 
detailed payoff, as well as informal fictional 
designer dialogs.  

PRIVILEGED MOVE 

Problem: Sometimes a given game entity cannot be 
permitted to interfere with others, or other entities 
cannot be permitted to interfere with it.  

Solution: Introducing exclusive moves and locations 
separates and protects game entities. These exclusive 
moves and locations cannot be entered or left without 
being able to perform the respective privileged move. 
By introducing different, separate spaces or media, 
the game environment is broken down into distinct 
areas, which can serve e.g. as safe zones or safe 
passages.  

Consequence: Depending on the implementation, this can 
be a very heavy-handed way to ensure protection. 
Unless protection is implemented in a way that is at 
the player's disposal (a door that only she can open 
and close), the player might perceive the constraint 
as annoyance and disappointment. If the restriction is 
meant to be temporary, the mechanism to allow it to be 
lifted has to be communicated to the player, and 
initiated by her.  

Examples: In DOOM, monsters could traverse acid pools, 
but the player could only at the expense of damage 
that quickly turned to be lethal. In Half-Life and 
Halo, enemy soldiers can be dropped from flying 
vehicles, a transportation mechanism not available to 
the player, and impossible to interfere with. Half-
Life also had a spider-like boss that was capable of 
breaking through its own nets, which blocked the 
player's way until she forced the monster to retreat. 
In Thief, the player traverses rooftops in relative 
safety, permitting preview and outlook on the level 



PRIVILEGED MOVE is a pattern proposal for a mechanism rarely discussed, but frequently used for 
a multitude of purposes. A single solution can solve or address multiple problems; a situation that 
is not clearly addressed in Alexandrian pattern languages that emphasize the problem-oriented 
aspect of pattern use. PRIVILEGED MOVE is also a very close relative of FILTER. This example set 
is by no means comprehensive. As Gamma et al. wistfully remark: "Finding patterns is much easier 
than describing them." 

  

bottom. In Ico, the ghostly opponents traverse the 
world in a different dimension, and emerge from 
portals without apparent restriction. In Munch's 
Oddyssee, water was inaccessible to enemies, providing 
one player character a privileged swim move and safe 
passage (in the absence of snipers and mines). In many 
games, water enemies are in turn restricted to that 
medium (e.g. Quake, Half-Life). In many games flying 
opponents (e.g. the harpies in Heretic 2) can perform 
moves the player cannot, and thus enjoy some amount of 
safety.  

FILTER 

Problem: If the player is given means to create new 
game objects, and/or new combination of existing 
objects, and/or move game objects arbitrarily, the 
resulting complexity might become overwhelming for the 
designer.  

Solution: Limit local complexity by filtering, thus 
creating smaller, clearly defined subsets that can be 
dealt with.  

Consequence: Player freedom is restricted by implicit 
or explicit means. Accidental filtering can lead to 
game situations that the player cannot solve. Ideally, 
the filtering is obvious to the player, and inherent 
part of the game world. FILTER can be an intended 
consequence or unintended side effect of PRIVILEGED 
MOVE.  

Examples: FILTER as a means of dealing with 
combinatorial complexity of possible game states is 
extracted from Jon Blossom's postmortem of DroidWorks 
([9]). Quote: "Our level designers [..] could never be 
entirely sure what kind of droid would be walking into 
their rooms [...] In many cases, they created 
ingenious physical filtering mechanisms that would 
guarantee only certain types of droids went beyond 
certain points in the level: A steep hill would weed 
out biped droids in favor of droids with tractor 
treads, a chasm would weed out wheeled droids that 
couldn't jump, a narrow canyon would weed out wide 
droids, and a short door would weed out tall droids. 
The designers used the terrain leading up to key 
puzzles to reduce the complexity of the puzzle itself 
[...]"  



  

WEENIE 

Problem: Players might loose their sense of direction 
with respect to how the game world unfolds. This is a 
particular problem with player-driven scripting 
proceeding in lockstep with player actions.  

Solution: The game has to establish clear leads that 
communicate to the player where to go, and what 
actions to attempt once there.  

Consequence: The player will over time come to depend 
on the level of guidance, and will be confused if this 
guidance is dropped or omitted, which introduces a 
bias towards WEENIE CHAIN. Depending on the rigidity 
of the guidance mechanisms, players might become aware 
the out-of-game agenda behind the in-game setups.  

Examples: On occasion this has been called the "carrot 
on a stick" approach to level design [8]. Stephen 
Clarke-Wilson [13] explains: "This somewhat bizarre 
term was coined by Walt Disney, who suggested that 
when designing massive 3D environments (theme parks), 
it was necessary to lead visitors through the 
environment the same way one trains a dog-by holding a 
wiener and leading the dog by the nose. Obvious 
weenies at Disneyland are Sleeping Beauty's Castle, 
which encourages guests to travel from the main 
entrance to the central hub; the former Rocket Jets, 
which encourage guests to explore Tomorrowland; the 
Mark Twain Steamship and dock, which encourage guests 
to explore Frontierland; and the King Arthur Carousel, 
which encourages guests to walk over the castle moat 
and into Fantasyland. [...] Your 3D VR environment 
needs to have standout landmarks so that it's easy to 
navigate without a map. The best games, which have 
typically been designed with very limited graphics, 
always save a few graphics to denote special and 
interesting things that should be investigated." 
Alternative means to communicate to the player the 
next proposed or mandatory step are explicit messages 
delivered by NPCs, or brief camera cuts that draw 
attention to doors opening in nearby locations, like 
that used in Munch's Oddyssee. Cliff Bleszinksi 
describes as the most subtle and always present WEENIE 
the incentive of seeing a new area: the player is 
always inclined to move from "been here, done this" 
into unknown territory [8].  

WEENIE CHAIN 

Problem: The player can lose sense of direction in the 
absence of clear indicators of where to go next. This 
is particularly a problem in games with large or non-
linear environments that do not rely on rails or cut-



Pattern candidates can be harvested from many sources. For example, the pattern FILTER is taken 
verbatim from a game postmortem. WEENIE is taken from a discussion of theme parks and 
techniques of environmental storytelling, and has been presented under a different name in 
lectures on level design. WEENIE also is the foundation of WEENIE CHAIN, illustrating pattern 
dependency, composition, and hierarchy. 

Once you start looking for patterns, you start noticing them everywhere. Erich Gamma et al. point 
out that whether they are aware of it or not, novelists and playwrights already use patterns. Many 
"narrative devices" (see e.g. [32]) could also be described using a pattern template.  

Sometimes the need to differentiate patterns on distinct levels of abstraction leads to different 
labels: "One person's pattern can be another person's primitive building block" (from [19]). 
Alexander et al. present a total of 253 patterns, subdivided into three sets for "Towns, Buildings 
and Construction" [3]. Preferences regarding the virtues of a given purpose might apply: patterns 
are just recipes, means not ends, and disagreement on the ends is beyond the scope of a pattern. 
Designers might also have different views on the quality of a given solution: one person's pattern 
might well be another's "anti-pattern" -- a recurring example of a bad design decision. Ideally, the 
pattern description itself is just a candid summary of cause and effect, describing one way to reach 
a given objective. 

Alexandrian patterns are not unknown to game developers. Many programmers are familiar with 
Gamma's concept of software design patterns. Will Wright of Maxis credits the same book as the 
original inspiration for The Sims, and refers to Christopher Alexander's works (namely [1]). Steven 
Chen and Duncan Brown, former level designers at LucasArts, refer level designers to the 253 
Alexandrian patterns merely as a guideline to create "meaningful environments" [10]. 

Instead, game developers strive to develop their own forms and templates. The Formal Abstract 
Design Tools (FADTs) proposed by Doug Church can easily be rewritten to fit the canonical pattern 
template. Another recent attempt to document game design knowledge in semi-formal ways is 
"The 400 Project" by Hal Barwood and Noah Falstein, is a project to collect proven game design 
rules and techniques. This 400 Project dates back to a GDC 2001 lecture by Hal Barwood, in which 
he also presented four examples. 

Their effort has now spawned a column in Game Developer  magazine, in which Noah Falstein 

offs to constrain player movement, or employ 
"revisiting" of areas [8].  

Solution: Create an uninterrupted chain of WEENIEs, 
with each link of the chain clearly perceivable from 
its predecessor, guiding the player from start to 
finish.  

Consequence: WEENIE CHAIN might be limited in 
employing branches or otherwise introduce ambiguity or 
player choice. Enforced, WEENIE CHAIN might resemble a 
rail.  

Examples: Noah Falstein refers to Indiana Jones and 
the Fate of Atlantis as an example of how to establish 
a chain of clear player goals using messenger NPCs 
[18]. His other examples are Super Mario 64 and its use 
of signs and NPCs, as well as Halo. Munch's Oddyssee 
also uses signs, as well as a Shaman NPC for initial 
guidance.  



introduced the rule "Provide clear short-term goals" as the opening example. The 400 Project uses 
a five -part template: Imperative Statement - Domain of Application - Dominated Rules - 
Dominating Rules - Examples Aliases (see [18] for details). The concept of dominance (that some 
rules take precedence over others, and might in turn be trumped themselves) is absent from 
Alexandrian patterns. An Alexandrian pattern simply lists one possible solution to a given problem, 
acknowledging that other solutions might exist. Alexander sees each pattern as a recipe that 
strives to balance competing imperatives and conflicting forces in order to achieve the best 
possible results with respect to a specific objective. The decision to use a given pattern will also 
depend on whether there are multiple objectives to fulfill or when aside effects of applying a given 
solution, influence the. Falstein's rules appear more rigid, implying that all games have the same 
goals, and the same concerns. The names of the rules in the 400 Project are imperative 
statements, like Provide clear short-term goals, and their description contains only the solution 
part of a pattern. The problem to be solved by the pattern is merely implied or presumed obvious 
in this revision of the rules. WEENIE, as well as WEENIE CHAIN, capture parts of Provide clear 
short-term goals but also explicitly state the role of the pattern. Like rules, pattern names typically 
name the solution, not the problem: a matching pattern might just be called SHORT-TERM GOALS. 

Outlook 

Patterns are a formal means of documentation, and such means open the door to software tools for 
maintaining and editing game design documents. Take screenplays: word processors can be 
configured to handle the canonical format for scriptwriting, and some applications have been 
designed specifically to support that movie industry format. Many game companies and game 
designers have devised their own internal standards for game design documents. But defining a 
standard format for game design documents is of limited use unless there are editing and search 
facilities that support and enforce the format. 
 
A pattern language is a natural match for descriptive markup, e.g. XML, with a huge potential for 
tool support based on off-the-shelf software. The value of any "living" document is directly related 
to the ease of its maintenance. Structured editing aids structured thinking: if a design document 
does not have clear organization, its use of keywords and names is inconsistent, and relevant 
information can not be located quickly when needed, the document is practically useless.  

Consequently, game developers have to make a sustained, conscious effort to define and describe 
the recurring elements of their daily work - whether as patterns, rules or some other method -- so 
we can begin to create software tools made or adapted specifically for game design purposes. The 
case for Alexandrian game design patterns [22,29] seems strong: they have proven themselves in 
other and diverse professions; they are intuitive, well documented, and a familiar concept to 
software engineers, yet are flexible enough to permit anecdotak or informal descriptions of artistic 
choices.  

Bibliography 

[1] Christopher Alexander. Notes on the Synthesis of Form. (Harvard University Press 1964, 1966, 
1979.) ISBN 0-674-62750-4 (cloth) ISBN 0-674-62751-2 (paper)  

[2] Christopher Alexander, Murray Silverstein, Shlomo Angel, Sara Ishikawa, and Denny Abrams. 
The Oregon Experiment. (Oxford University Press, 1975.) ISBN 0-19-501824-9  

[3] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdahl-King, 
and Shlomo Angel. A Pattern Language: Towns, Buildings, Construction. (Oxford University Press, 
1977.) ISBN 0-19-501919-9  

[4] Christopher Alexander. The Timeless Way of Building. (Oxford University Press, 1979.) ISBN 0-



19-502402-8  

[5] Brad Appleton. Patterns and Software: Essential Concepts and Terminology. Last update: Feb. 
2000.  

[6] Hal Barwood. "Four of the Four Hundred 2001". (GDC lecture, 2001.)  

[7] Hal Barwood and Noah Falstein. "More of the 400: Discovering Design Rules 2002" (GDC 2002 
lecture)  

[8] Cliff Bleszinski. "The Art and Science of Level Design." (GDC 2000, pp. 107--118.)  

[9] Jon Blossom and Collette Michaud. "Postmortem: LucasLearning's Star Wars 
DroidWorks" (Gamasutra 1999.) Originally Game Developer magazine, Vol 3, Issue 28, pp. 52-58, 
July 1999.  

[10] Steven Chen and Duncan Brown. "The Architecture of Level Design."  (GDC 2001 Proceedings, 
pp. 167--175.) 

[11] Doug Church. "Formal Abstract Design Tools." (Gamasutra, 1999. Originally Game Developer  
magazine, Vol 3, Issue 28, July 1999.) 

[12] Doug Church. "Abdicating Authorship: Goals and Process of Interactive Design." (GDC 2000, 
San Jose, Lecture 5403 (not in proceedings).)  

[13] Stephen Clarke-Willson. "Applying Game Design to Virtual Environments" (Digital Illusion, 
ACM Press, Vol. 2, Issue 1, January 1, 1998.)  

[14] (N/A). 

[15] Chris Crawford. The Art of Computer Game Design, Chapter 6: "Design Techniques and 
Ideals." 1984.  

[16] Troy Dunniway. "Using the Hero's Journey in Games." (Gamasutra, 1999. Originally published 
in Game Developer magazine, August 1999.)  

[17] Troy Dunniway. Professional Game Design. (New Riders. To be published June 2002. ISBN 0-
7357-1184-4. ) 

[18] Noah Falstein. "Better By Design: The 400 Project". (Game Developer magazine, Vol. 9, Issue 
3, March 2002, p. 26.) 

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of 
Reusable Object-Oriented Software. (Addison Wesley Longman, 1994.) ISBN 0-201-63361-2.  

[20] Chris Hecker and Zachary Booth Simpson "Game Programming Patterns & Idioms." Game 
Developer magazine, Sep. 2000.  

[21] John Hopson "Behavioral Game Design." Gamasutra, April 2001.  

[22] Bernd Kreimeier. Game Design Patterns. Wordware Publishing, Inc. To be published March 
2003.) ISBN 1-55622-967-4 



[23] Brenda Laurel. Computers as Theatre. (Addison Wesley Longman, Inc. 1991, 1993 ISBN 0 -
201-55060-1.) 

[24] Marc LeBlanc. "Formal Design Tools: Emergent Complexity, Emergent Narrative." GDC 2000, 
San Jose, Lecture 5304 (not in proceedings).  

[25] Gerard Meszaros and Jim Doble "A Pattern Language for Pattern Writing"  

[26] Pierre -Alain Mueller. Instant UML . (Wrox Press, Ltd., 1997) ISBN 1-861000-87-1.  

[27] Karen Pryor. Don't Shoot The Dog! (Bantam Doubleday, 1999) ISBN: 0-55338-039-7 (revised 
paperback edition)  

[28] Andrew Rollings and Dave Morris. Game Architecture and Design. (The Coriolis Group, 2000.) 
ISBN 1-57610-425-7  

[29] Andrew Rollings and Ernest Adams. Patterns in Game Design. (The Coriolis Group, to be 
published May 2002.) ISBN 1-57610-873-2  

[30] Richard Rouse. Game Design: Theory & Practice. (Wordware, Inc., 2000) ISBN 1-55622-735-3 

[31] Aamod Sane "The Elements of Pattern Style." December, 1995.  

[32] Viktor Shklosvsky. Theory of Prose Dalkey. (Archive Press 1990, 1991.) ISBN 0-916583-54-6 
(cloth) ISBN 0-916583-54-6 (paper).  

[33] Zachary Booth Simpson "Design Patterns for Computer Games." 1998 CGDC Austin, TX, 
November 1998, also San Jose, CA, May 1999.  

[34] John Vlissides. "Pattern Hatching - Seven Habits of Successful Pattern Writers." C++ Report. 
Nov/Dec 1996, and Pattern Hatching: Design Patterns Applied (Addison Wesley, 1998).  

[35] Christopher Vogler. The Writer's Journey: Mythic Structure for Writers. (Michael Wiese 
Productions, 1998.) ISBN 0-941188-70-1  

  



Game Programming Design Patterns are templates for building modularised code that are generally a repeatable solution to a
commonly occurring mechanic applied in computer games. They are general solutions that arenâ€™t tied to a particular problem,
making them reusable. One such pattern is object pooling. Whether a game needs an onslaught of All practicing the Design Patterns
displayed in Robert Nystrom's 'Game Programming Patterns' for game development. 0 stars. 0 forks.Â  Game-Programming-Patterns.
All practicing the Design Patterns displayed in Robert Nystrom's 'Game Programming Patterns' for game development. About. All
practicing the Design Patterns displayed in Robert Nystrom's 'Game Programming Patterns' for game development. Resources.
Readme. game design patterns that describe player interaction while playing. Although the two. parts are the results of an intertwined
process they can be used independently; the. structural framework can be used without the patterns to describe games and the use of.
design patterns can be based on other structural frameworks. Due to limited space, we. do not present a detailed description of the
structural framework and refer interested. This is a tutorial on game programming patterns in Unity with C# code. Another name for the
same thing is software design patterns. You will learn the following programming patterns: command pattern, and much more.Â  In
software engineering, a software design pattern is a general reusable solution to a commonly occurring problem within a given context in
software design. It is not a finished design that can be transformed directly into source or machine code. Developer Blog #1: Game
Design Patterns and Anti-Patterns. Throughout the design of Arkis Vir, we have been balancing mechanics that are fun for video games,
while incorporating a few key mechanics that give board games their allure.Â  Not very board-gamey but very fun nonetheless! So here
is Part 1 of a 3-part developer blog series that will attempt to illustrate and explain how weâ€™ve decided what gets put in the game,
and what doesnâ€™t.


	Paper
	Supplement: Pattern Practice
	Supplement: The Case For Game Design Patterns
	PREVIOUS MENU
	PRINT THIS DOCUMENT
	SEARCH CD

	previous: 


