The epitaxial films grow upward and consume the amorphous regions. The crystallization temperature of both LaA103 and MgAl20 4 are lower for thin films than for bulk samples due to the substrate seeding. The transformation of LaA103 is not linear growth as in typical homoepitaxy. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Growing of epitaxial Fe50Mn50/Fe/Mo/R-sapphire films was performed with a new configuration of two in-plane easy axes of Fe(001)-layer magnetization in which application of annealing in a magnetic field forms an unidirectional anisotropy. The microstructures made from these films exhibited an exchange bias 25â€“35 G along an exchange field generated at antiferromagnet/ferromagnet (AFM/FM) interface.