What kind of contribution is *Designing Social Inquiry* (hereafter KKV) by Gary King, Robert O. Keohane, and Sidney Verba? Consider the traditional distinction between theology and homiletics.

THEOLOGY VERSUS HOMILETICS

Theological seminaries distinguish between theology, or the systematic study of religious beliefs, and homiletics, the art of preaching the gospel convincingly. Theologians ask hard questions, develop new systems of theology, and often espouse opinions that would shock and horrify the practicing and devout members of the religion’s congregations. Homiletics is about homilies; it is about sermons that are practical, down to earth, simple, and above all, reliable interpretations of the faith. Religions understand, as the social sciences may not, that the goal is to save souls and not simply to increase our knowledge or understanding of the world. For this reason, both theology and homiletics have pride of place in seminaries.

The social sciences have a great deal of theology, but very little homiletics. Perhaps this is why we have saved so few souls. And it may also be why we do such a bad job of training students. A little homiletics might go a long way toward improving our discipline.
KKV is a homily, not theology. There is art in a good homily. Like all good homiletic literature, KKV puts aside doubt and complexity. After all, who would want to burden the average graduate student with the tedious complexity of St. Thomas Aquinas in *Summa Theologica* or Paul Tillich in *Systematic Theology*? And who would recommend the self-doubt of St. Augustine’s *Confessions* or Kierkegaard’s *Fear and Trembling* or *The Sickness unto Death*? Better to give them Norman Vincent Peale’s *The Power of Positive Thinking*.

KKV, however, is not just about positive thinking. It is closer to Moses Maimonides’ *Guide for the Perplexed* or Luther’s *A Catechism for the People, Pastor and Preacher*. It has a powerful message about the need for reform, self-sacrifice, and discipline on the part of all political scientists—especially qualitative researchers. It puts forth a simple, straightforward faith. It tries very hard to treat qualitative researchers as souls worthy of salvation. And it envisions a unified social science in which there are “Two Styles of Research, One Logic of Inference” (3). To practice this one logic of inference, KKV presents a simple, unified series of steps, a faith to live by, based upon insights from conventional quantitative methods and econometrics. In chapter 3, for example, we are told to:

- Construct falsifiable theories.
- Build theories that are internally consistent.
- Select dependent variables carefully.
- Maximize concreteness.
- State theories in as encompassing a way as possible.

1. *Designing Social Inquiry*, subtitled *Scientific Inference in Qualitative Research*, begins by discussing the relationship between quantitative and qualitative research, but another dichotomy also runs through the book. Quite often the authors are more concerned with juxtaposing “small-N” versus “large-N” research than with the qualitative-quantitative distinction. These are not the same things. Small-N research is often qualitative, but it need not be, and large-N research can be qualitative. Roughly speaking, the qualitative-quantitative distinction revolves around issues of concept formation and measurement whereas the small-N versus large-N distinction brings up problems of defining the relevant populations, sampling from them, and dealing with statistical variability. I argue later in this chapter that these statistical issues are dealt with much more clearly in KKV than are those regarding concept formation and measurement. We return to these issues in chapter 12 below.

2. This phrase resonates especially well with someone like myself who was brought up as a Catholic where the faithful must deal with the mystery of three manifestations of God (in the Father, Son, and Holy Spirit) in a monotheistic religion. By childhood training, I am quite receptive to a message of monomethodism, even in those circumstances where it requires a leap of faith.
In homiletic literature, exhortations such as these should be simple, and they need not always be completely consistent (witness the last two rules listed above). A good sermon should have clear points; it should avoid doubt; it should provide plenty of examples. The goal should be to convert the heathen qualitative researcher to the true faith.

This book—to its credit—does these things. It is an extraordinarily good piece of homiletic literature and it should be used in the classroom. It is very nicely written. It is generally lucid and well organized. No one can fail to hear its message.

And indeed, we should all hear the message that is preached. I, for one, have great sympathy with this enterprise, having spent far too many hours listening to talks on comparative politics in which dependent variables or independent variables (or both) did not vary, in which selection bias seemed insurmountable, in which explanations seemed more like good stories than hard-won insights gained from ruling out alternative possibilities. In my introductory statistics classes, I, too, have tried to point out to comparativists that they could do so much better if they avoided omitted variable bias, stopped selecting on the dependent variable, and so forth. I have used some of the same diagrams displayed in the text of KKV (e.g., figures 4.1, 5.1, and 5.2) to make didactic points about good research.

Why, then, do I find myself worried about what this book tries to do? Perhaps I am worried because, despite the authors’ desire for a unified approach to social science, there may be something wrong with quantitative researchers— who luxuriate in large numbers of observations and even the possibility under some circumstances of doing experiments—trying to impose a code of conduct, a morality, taken from their own experiences. Certainly the authors, three of the most distinguished and intelligent political scientists in our discipline, mean well, think well, and write well. But I worry that, in the end, they are a little like the Reverend Ike who, when asked how he reconciled living in luxury while he preached to the poor, responded that he believed that the best thing you could do for the poor was not to be one of them. The book ends, in fact, with a chapter on "Increasing the Number of Observations."4 Is this the best thing we can do for qualitative researchers: to recommend that they not be "small-N" researchers?

Qualitative researchers may indeed profit by increasing the number of observations, but this is not the best thing we can do. The book is a valuable contribution to the discussion of research methodology, but it is not a comprehensive guide to the conduct of social science research. It is a call to action, but it is not a blueprint for change.

3. Keohane is not a quantitative researcher, but two of the authors, King and Verba, certainly are, and the book’s approach is so rooted in quantitative research that it seems fair to make this assertion.

4. This chapter means more and does more than just suggest that qualitative researchers get more data, although that is one of the recommendations. I make more comments about this interesting chapter later in the review.
observations, and one of the great strengths of KKV is that it tries to indicate how the poor in observations can become richer in their understanding. At the same time, the book’s unspoken presumption that qualitative researchers are inevitably handicapped by lack of quantification and small numbers of observations is bothersome. It ignores the possibility that quantitative researchers may sometimes be handicapped by procrustean quantification and a jumble of dissimilar cases.

DESCENDING FROM THE RHETORICAL HEIGHTS

I have a number of specific concerns about KKV. Here I will focus on two: my belief that KKV is handicapped by a view of causality too closely tied to the experimental method, and my desire to see more discussion of measurement problems.

Before addressing these concerns, I wish to establish a fair standard for evaluating KKV. Given that I consider KKV to be a homily, and not a work of theology, it may be worth remarking that the value of the Baltimore Catechism in which I was drilled as a child should not be measured by its logic and argument. Rather it should be evaluated in terms of how many children it saved from perdition. In the end, I think that is how KKV should be judged. Does it work in a classroom? Does it make us better social scientists? By opening up a dialogue with qualitative researchers, the book does make us better, but in its treatment of causation and measurement, KKV may not help us very much.

Explanation and Causality

After a useful discussion of descriptive inference or “establishing facts” in chapter 2, KKV goes on in chapter 3 to discuss “Causality and Causal Inference.” As far as I can tell, they equate explanation with causal thinking. Yet

5. It is not exactly clear how “explanation” fits into KKV’s categories of descriptive and causal inference, but one reasonable interpretation is that the authors consider explanation to be identical with causal inference. In the first three paragraphs of chapter 2, they repeatedly refer to the “dual goals of describing and explaining” (34). They also note that “description and explanation both depend upon rules of scientific inference. In this chapter we focus on description and descriptive inference” (34). This suggests that chapter 3, on “Causal Inference,” is about explanation. Yet, things cannot be quite so simple, because they go on to say that “as should be clear, we disagree with those who denigrate ‘mere’ description. Even if explanation—connecting causes and effects—is the ultimate goal, description has a central role in all explanation, and it is fundamentally important in and of itself.” The first part of the sentence seems to define explanation as “connecting causes and effects,” but the second part seems to say that description is also a form of explanation. In
philosophers of science are not so sure that the only kind of explanation involves causality. Take, for example, “classification” explanations such as the observation that iron has certain properties because it appears in a certain column of the periodic table. This does not appear to be a causal explanation. It could be argued that Bohr’s atomic theory and its extensions in modern quantum mechanics provide a causal explanation, but this only amounts to saying that there may be causal explanations as well as classification explanations. Moreover, there was a substantial period of time when the classification explanation was all we had. Should we discard these explanations, even when they are all we have, because they do not appear to be causal? We are not so rich with explanations in the social sciences that we can afford to do this without good reason. Qualitative social scientists, in fact, seem especially fond of typologies and classification systems. Do these tools contribute to the explanatory enterprise? I do not personally have an answer to my question, so perhaps I should not fault KKV for failing to include a discussion of this difficult issue. But it is perplexing and thought provoking.

The approach to causality advanced in KKV is based upon an interesting framework developed by the statisticians Donald Rubin (1974, 1978) and Paul Holland (1986). The great strength of this approach, to my mind, is that it emphasizes that a definition of causality requires (a) the careful description of a counterfactual condition (what would have happened if the cause had been absent?) and (b) a comparison of what did happen with what would have happened had the cause been absent. These are two powerful points, and KKV is to be commended for bringing them to the forefront of our discussion. Researchers of all stripes should spend more time describing the counterfactual world that underlies their “becauses.” What does it mean, for example, to say that “turnout is lower in that district because it has a high proportion of minorities”? What is the counterfactual

the sentence after this one, KKV retains the duality of description and explanation and seems to equate explanation with causal inference, but the book argues for the primacy of inference over either one: “It is not description versus explanation that distinguishes scientific research from other research; it is whether systematic inference is conducted according to valid procedures. Inference, whether descriptive or causal, qualitative or quantitative, is the ultimate goal of all good social science” (34).

6. For more discussion of this example and whether there are noncausal explanations, see Achinstein (1983: chap. 7). Brody and Grandy (1989) provide an excellent set of readings on these topics. Gary King has suggested (personal communication) that classification is a form of descriptive inference, but this seems to stretch KKV’s concept of descriptive inference beyond distinguishing “the systematic component from the nonsystematic component of the phenomena we study” (56). It also adds to the confusion noted in the preceding footnote.
world in which turnout would be higher? Is it simply one with a lower proportion of minorities? Would these nonminorities be like minorities in every other respect except race? How could this happen? What would it mean to have it happen? These are not easy questions.

I have already argued that there might be explanation without causality. I think there might also be causal effects without (much) explanation. Suppose we find, to use KKV’s example, that incumbent legislators do better in elections than nonincumbent legislators. Suppose, in fact, we are as certain as we can be about this because we have done an experiment (random term limits, for example) with a large N to test it out. This finding immediately leads to other questions about what aspects of incumbency create this advantage (see, for example, Cain, Ferejohn, and Fiorina 1987). These questions amount to a desire to further specify the causal mechanism. KKV is not averse to specifying causal mechanisms, and the authors say that “any coherent account of causality needs to specify how the effects are exerted,” but they believe that “our definition of causality is logically prior to the identification of causal mechanisms” (85–86). This claim of logical priority may or may not be true (I am not sure it is very important), but what is true is that a discussion of causality is inevitably tied up with a discussion of explanation, theories, and causal mechanisms, and KKV does not pay enough attention to this relationship. There is no discussion of Hempel’s (1965) covering laws, of Wesley Salmon’s (1984) model of statistical explanation, of Scriven’s (1975) “Causation as Explanation,” and many other important works on this topic. This is surprising because the philosophical literature, at least, cannot seem to separate the discussion of these issues.

The statistics literature, in fact, is exceptional in defining causality without discussing explanation. Perhaps this is because statisticians want a method of inference that relies only upon the research design and the data, and not at all upon the substance of the research. Yet the net result of the Rubin-Holland papers is a definition that seems surprisingly distant from

7. I have deliberately chosen an example in which the putative cause is a characteristic that might be thought unchangeable. Holland, for example, argues that it is impermissible to call race or gender a cause because “for causal inference, it is critical that each unit be potentially exposable to any one of the causes. As an example, the schooling a student receives can be a cause, in our sense, of the student’s performance on a test, whereas the student’s race or gender cannot” (Holland 1986: 946). This point is not much in evidence in KKV, and I think the authors were wise to minimize its importance because it certainly seems possible to imagine a world in which gender or race changes, but nothing else.

8. Brody and Grandy (1989), for example, link them in part 2 of their reader entitled “Explanation and Causality.” Scriven (1975) joins the two concepts in his famous article on causation as explanation, and every philosophical writer of whom I am aware deals with explanation and causation together.
the problems of theory building and explanation as it exists in the sciences. Most importantly, this approach provides no guidance on what constitutes a “good” explanation beyond what constitutes a good causal inference. Yet an analysis of the impact of incumbency may be an excellent causal inference while being a bad explanation.9

After defining causality, KKV goes on to describe a method for causal inference. In this, as in its definition, KKV is guided by the work of Rubin and Holland. The major strength and weakness of this approach is its reliance upon the metaphor of the controlled experiment for solving the problem of causal inference. Holland tells us that:

because experimentation is such a powerful scientific and statistical tool and one that often introduces clarity into discussions of specific cases of causation, I unabashedly draw on the language and framework of experiments for the model for causal inference. It is not that I believe an experiment is the only proper setting for discussing causality, but I do feel that an experiment is the simplest such setting. (1986: 946)

Fair enough. But it is worrisome that Holland finds it “beyond the scope of this article to apply the model for causal inference to nonrandomized studies” (949). Holland cites other literature (Rubin 1978) that essentially concludes that nonrandomized studies are exceptionally difficult to analyze. It is telling that Rubin’s extension of the basic framework requires modeling “(1) the prior distribution of the potentially observable data, (2) the mechanism that selects experimental units for exposure to treatments and assigns treatments, and (3) the mechanism that chooses values to record for data analysis” (Rubin 1978: 35). This is a lot of modeling, and it only seems possible if we have strong theories to draw upon.

KKV provides a simplified version10 of the Rubin and Holland framework, and in the process ignores some of its subtleties. The crucial part of

9. If the incumbency example does not persuade, consider a doctor called upon to explain the incidence of psychedelic experiences in a remote culture. In an experiment, the doctor shows that a treated group eating a plant diet consisting of peyote, hemp, beans, carrots, and other plants has a statistically significant increase in their incidence of psychedelic experiences. Thus, eating plants causes psychedelic experiences. This is clearly an incomplete explanation. I wish KKV had discussed by what method I might improve it. I think a discussion of a “good explanation” that went beyond methods for finding causal impacts would have gone a long way toward solving this problem.

10. The authors do add one complexity by making a useful distinction between “realized causal effect” and “random causal effect,” but they suppress so much notation and philosophical discussion in their presentation that many of the nuances in Holland’s (1986) presentation are lost and none of the extensions in Rubin (1978) are discussed.
KKV’s argument is its discussion of “Conditional Independence” (KKV 94–96). In the Rubin-Holland setup there are as many dependent random variables as there are variations in the treatment condition or the explanatory variable(s). In the simplest case with two levels of the treatment, this implies two random variables. One describes the values on the dependent variable Y for the situation where all cases in the population get one level of the treatment (call this Y^I to match KKV’s terminology) and the other is for the values on the dependent variable for the situation where all cases in the population get the other level of the treatment (call this Y^N and assume for simplicity that it is no treatment at all). In the real world and for any feasible design, at least one of these values must be censored for each case. That is, we cannot give a case some treatment and no treatment at the same time. But Y^I and Y^N are not the censored variables; they include the unobserved (and unobservable) values as well as the observed ones. A reasonable definition of the causal effect of the treatment is the average of Y^I minus the average of Y^N, but this quantity cannot be calculated because of the unobserved values in these two random variables.

In the Rubin-Holland framework, a necessary assumption for estimating a causal effect is independence between the assignment of treatments and the random variables Y^I and Y^N. This ensures, for example, that people who are high on Y are not more likely to get a high level of treatment than those who are low on Y. Consequently, we can be sure, for a large enough sample, that the size of the causal effect is the difference between (a) the average of the dependent variable for those who did get the treatment (this quantity can be calculated) and (b) the average of the dependent variable for those who did not get the treatment (another calculable quantity). One way to achieve this kind of independence is to have correctly carried out randomized experiments.

KKV’s discussion of this is a bit opaque, and the authors seem to conflate the independence assumption with conditional independence.12 Conditional independence states that the values assigned to the explanatory variables are independent of the values of the dependent variables, i.e., Y^I and Y^N are independent of Y. The first quoted sentence must refer to the independence assumption (because conditional independence does not assume that the values assigned to the explanatory or control variables are independent of the values of the dependent variables) whereas the second quoted sentence appears to be about conditional independence.

11. In this exposition I ignore sampling problems by assuming observations are available on all members of the population. If the entire population cannot be observed, then some assumption has to be made about random sampling.

12. This accounts for the confusing set of sentences at the beginning of section 3.3.2 where KKV first says that “conditional independence is the assumption that values are assigned to the explanatory variables independently of the values taken by the dependent variables” and then goes on to say, “that is, after taking into account the explanatory variables (or controlling for them), the process of assigning values to the explanatory variable is independent of both (or, in general two or more) dependent variables, Y^I and Y^N’” (94). The first quoted sentence must refer to the independence assumption (because conditional independence does not assume that the values assigned to the explanatory or control variables are independent of the values of the dependent variables) whereas the second quoted sentence appears to be about conditional independence.
tional independence is the assumption that the values of Y^i and Y^N conditional on "pre-exposure" or "control" variables are independent of the assignment of treatments. This is implied by independence but it is a much less stringent assumption. It is the assumption that is usually required for the analysis of quasi-experiments (Achen 1986). The conflation of these two different assumptions creates difficulties in the exposition because, whereas we have a method of random assignment to treatment for attaining independence, we have no comparable method for ensuring that the conditional independence assumption holds outside of a randomized design. The best we have is the checklist of "threats to internal validity" developed by Donald Campbell with Julian Stanley and Thomas Cook (Campbell and Stanley 1963; Cook and Campbell 1979). The rest of KKV can be considered another approach to developing a checklist of threats to validity.

Unfortunately, KKV does not allow itself enough pages in this short section to make this very important transition from a discussion of causal inference for experiments to causal inference with "quasi-experiments." I wish the authors had taken more time to explain the independence assumption in detail and to show how randomized experiments might provide us with an operational procedure that would make this assumption plausible. In doing this, they would no doubt have come to the conclusion presented by Cook and Campbell (and updated and expanded recently by Heckman 1992) that there are many reasons to worry about the efficacy of randomization when humans are involved. There are numerous ways in which human beings can make the treatment endogenous by changing their behaviors. There are additional problems when dropouts (and hence censoring of observations) vary by treatment. And there are the difficulties of truly randomizing units when they are people or groups. Once these problems are recognized for randomized designs, it becomes easier to understand how difficult it is to ensure conditional independence for non-randomized designs.

This transition section might also benefit from a more careful discussion of how theories provide the fundamental basis for making a claim of conditional independence. This is an extraordinarily important step, and knowing how to do it can help researchers avoid the inferential nihilism that has crept into some statisticians’ discussion of causal thinking in the social sciences (e.g., Freedman 1991). According to this line of thinking, randomized experiments are practically the only reliable way to be confident that

13. I was surprised to find that none of Campbell’s publications were referenced in KKV. Besides the books referenced in the text of the present chapter, Campbell’s selected papers on Methodology and Epistemology for Social Science (1988) make excellent reading.
the conditions for reasonable inferences are met. Conditional independence is considered a chimera—seldom justifiable and usually accepted by the researcher as a matter of pure faith and nothing more. Indeed, if I accepted a notion of inference as bare of theories and the logic of explanation as that proposed by Rubin and Holland, I might also be skeptical of conditional independence. But I believe it is possible to use our prior knowledge, our theories, to carry out the three modeling steps laid out by Rubin (and cited above). Hence, I am more sanguine about the possibilities for cautiously asserting conditional independence.

It might be argued that I brood unnecessarily over technical points. But the section on “Conditional Independence” is the linchpin of KKV. The book wants to show us that concepts from conventional quantitative methods and econometrics will improve our ability to do qualitative research. It argues that the essence of good social research is establishing causal effects. This, in turn, requires making an assumption about conditional independence. This assumption, the authors believe, can be made plausible by avoiding clear-cut violations of it described in the statistics literature. Yet at the crucial transitional moment the argument seems muddy to me. Exactly how can we rule out the violations identified by quantitative researchers? Do quantitative researchers do a good job in this regard? How sure can I be that conditional independence holds after I have followed the instructions in KKV?

The authors of KKV go on to make many useful observations about causal assessment (although, to be honest, I think that Donald Campbell and his collaborators have more useful lists of threats to validity and more trenchant comments about the problems of doing quasi-experimental research). However, in KKV the crucial argument about assessing causation seems to be missing.

Measurement

KKV devotes eighteen pages to measurement (151–68). About five pages cover the “nominal, ordinal, interval” distinction found in the classic papers by S. S. Stevens (1946, 1951), and the remaining thirteen are about systematic and nonsystematic measurement error. The major results on measurement error are the classic ones dating from at least Tintner (1952) on how error in the dependent variable does not bias regression results whereas error in the independent variable produces bias in regression coefficients—in fact, biases them unambiguously downward in the bivariate case. These are well-known results, often repeated in one form or another in classic primers on research design such as Kerlinger (1979), but I do not think they get at the heart of what can be learned from the extensive literature on measurement.
KKV probably gives such short shrift to measurement because the authors believe that causal inference, roughly what Cook and Campbell call “internal validity,” is the central problem of doing good social science. I trace this belief to their decision to equate explanation with causal thinking, and to define causal thinking in terms of a narrow analogy to the experimental model. Through this progression, the problems of theory construction, concepts, and measurement recede into the distance. Yet it seems to me that concept formation, measurement, and measurement validity are important in almost all research and possibly of paramount importance in qualitative research. Certainly notions such as “civil society,” “deterrence,” “democracy,” “nationalism,” “material capacity,” “corporatism,” “group-think,” and “credibility” pose extraordinary conceptual problems just as “heat,” “motion,” and “matter” did for the ancients. It may be comforting for the qualitative researcher to know that the true effects of these error-laden variables are even larger in magnitude than what we would estimate using a standard regression equation, but most qualitative researchers are struggling with much more basic problems such as figuring out what it means to measure their fundamental concepts. These problems are certainly not solved by telling us to decide whether the concept is nominal, ordinal, or interval and by admonishing us to “use the measure that is most appropriate to our theoretical purposes” (KKV 153).

I will not pretend to have the answers to the problems of measurement validity in qualitative research, but I think that the debates on these problems would have been advanced by citing some of the more recent literature in this area. Among the notions that come to mind, let me mention three topics that might have been included. Something might have been said about the conceptualizations of measurement developed by Krantz et al. in their magisterial three-volume work on *Foundations of Measurement* (1971–1990), the related notions put forth by Georg Rasch in his quirky but very influential work on *Probabilistic Models for Some Intelligence and Attainment Tests* (1980 [1960]), and the fascinating *Notes on Social Measurement* (1984a) penned by Otis Dudley Duncan, who followed up this broadside on the limitations of social measurement with a brief for using Rasch models in the social sciences (1984b). These works show that qualitative comparisons are the basic building blocks of any approach to measurement, thus bridging the “quantitative-qualitative” divide by showing that the two approaches are intimately related to one another. This discussion would have easily led to a second topic: the dimensionality of concepts, the nature of similarity judgments that often underlie concept formation, and the role of taxonomies and classifications in science. Finally, there might have been a survey of how the LISREL framework (Bollen and Lennox 1991), especially when it is combined with the “multitrait-multimethod
approach” of Campbell and Fiske (1959), sheds light on the practical problems of measurement.

Let me discuss each of these literatures. Duncan’s observations on Stevens’s scale types are probably the best starting place:

I conclude that the Stevens theory of scale types, pruned of its terribly misleading confusion of classifications and binary variables with N scales, augmented to take more explicit account of the scales used in measuring numerosness and probability, and specified more clearly so that the examples could be properly understood and assessed, has utility in suggesting the appropriate mathematical and numerical treatment of numbers arising from different kinds of measurement. Still, a theory of scale types is not a theory of measurement. And I, for one, am doubtful that any amount of study devoted to either of those topics can teach you how to measure social phenomena, though it can conceivably be helpful in understanding exactly what is achieved by a proposed method of measurement or measuring instrument. (1984a: 154, italics added)

Lest anyone miss Duncan’s point, his next chapter is entitled “Measurement: The Real Thing.” What is “the real thing”? Krantz et al. (1971–1990) provide the fullest answer to this question, but Duncan provides a more accessible treatment. Measurement, Duncan argues, is not the same as quantification, and it must be guided by theories that emphasize the relationships of one measure to another. Take, for example, that favorite illustration of introductory methods classes, the measurement of temperature. Although the development of thermometry involves a complicated interplay between theory and invention, one of the important milestones was the discovery of the gas law for which temperature is proportional to pressure times volume. Thermometry only began to progress beyond crude ordinal distinctions such as cold, warm, or hot to true interval scales once laws like the gas law made it clear that temperature could be measured by the change in volume of some material under constant pressure.

One of the distinctive features of this way of measuring temperature is that it relies upon a simple multiplicative law, which relates temperature to two quantities that can be “extensively” measured. Extensive measurement refers to the use of the standard millimeter, gram, second, or some other quantity that can be duplicated so that a number of them can be added together (“concatenated”) and compared with some object or phenomenon whose length, weight, duration, or other feature is unknown. There is no such standard for temperature, but it can still be measured because it is related to two quantities that can be measured extensively (i.e., volume as length times width times height and pressure as mass times length per time and area squared).
A fundamental difficulty facing empirical social science is the apparent impossibility of developing extensive measurements of many important theoretical quantities. Consider, for example, the notion of utility that is basic to both economics and public choice theory. Utility cannot be measured extensively, but economists avoid this difficulty through an ingenious ploy: They throw utility out of their empirical models by deriving demand curves from the maximization of utility with respect to a budget constraint that consists of the sum of prices times quantities. This produces a demand curve—an equation in prices and quantities—both of which can be measured extensively. This ploy, unfortunately, does not appear to be readily available to political scientists.

The contribution of Rasch (1980 [1960]; see also Andrich 1988) and of Krantz et al. (1971–1990) in their method of “conjoint measurement” has been to show how measurement can be carried out without an extensive measure that can be duplicated and combined: all that is needed is the ability to make qualitative distinctions about the amount of each of several variables that are thought to be multiplicatively related to one another. Rasch’s method, designed for scoring achievement tests, has the great virtue that it scores both test-takers and the items on the test simultaneously.

All this fancy talk does not provide us with a straightforward way to measure the basic concepts in qualitative social science, yet it does provide us with some clues about how we might go about measuring these concepts. First, it suggests that we have two basic strategies for measurement. We can either try to define a concept extensively (as with length, weight, prices, or quantities) or conjointly (as with achievement tests and subjective probability). Thus we can measure democracy extensively by the fraction of the population enfranchised or by the number of parties, or we can measure it conjointly by using ratings from knowledgeable observers. If we use the second method, as qualitative researchers might be inclined to do, then we might want to think about whether we should scale the raters as well as the countries that are rated. Maybe raters differ in their willingness to call a country a democracy; maybe they even have biases of some sort or another.

Second, this discussion suggests that theories must help to guide the measurement process. In their impressive series of papers on bias in electoral systems, Gelman and King (1994) follow just this strategy with a simple framework for thinking about representation. Steven Fish (1995) also does this (more implicitly than explicitly) in his discussion of the development of civil society in Russia. One of his indicators of civil society is the aggregation of interests by groups, which he describes as the group’s “identification of ‘cleavage issues’ and the formulation of specific goals and agendas [and] . . . the formation of a collective identity, which includes the identification of a membership” (53–54). Although Fish does not provide
a mathematical description of his measure, it could be conceptualized as
the degree to which participation or membership in a group is highly corre-
lated with some politically relevant characteristic or cleavage. This amounts
to defining this component of civil society as the product of group partici-
pation and a politically relevant characteristic—a multiplicative relation-
ship of the sort described by measurement theorists as indicative of true
measurement. Fish’s approach makes sense partly because it has exactly this
form. Hence, measurement theory provides a clear-cut check on when we
can say that we have the framework for measuring something.14

This approach leads immediately into the next topic I mentioned above.
There is a very rich literature on the “topology” of measurement that indi-
cates what is required for single or multidimensional measures; what is
required for dimensionality itself; what is required before something is con-
sidered the same as something else; and under what conditions objects can
be better taxonomized using “trees” or Euclidian space. These methods are
now widely used in biology to inform studies of evolution. I suspect that
they would be quite useful for the qualitative researcher who wants to trace
the evolution of the concept of democracy over time, or the similarities and
differences among contemporary democracies.15 After all, qualitative
researchers often spend a great deal of time and effort developing typolog-
ies and taxonomies.

Finally, although I often worry about the wholesale use of LISREL in sur-
vey research, I think the marriage of factor analysis to simultaneous equa-
tion modeling in LISREL has made many researchers more aware of
measurement problems. Kenneth Bollen (1993) presents an exemplary use
of this technique in his analysis of ratings, developed by three different
scholars, of political liberties and democratic rule in countries around the
world. By having two concepts in mind, Bollen is able to search for “dis-
criminant” as well as “convergent” validity as Campbell and Fiske (1959)
tell us we should do. Bollen allows for the possibility that raters may have

14. Gary King (personal communication) suggests that these are points for
quantitative researchers and not qualitative researchers because they deal with
quantitative measures. Putting aside the fact that a discussion of measurement error
or Stevens’s scale types assumes the same thing (and the entirety of KKV is based
upon the premise that quantitative methods provide lessons for qualitative
researchers), it is worth noting that qualitative researchers also engage in compari-
sions that amount to a form of measurement. Qualitative researchers should know
that quantitative research relies upon just the kinds of comparative statements that
are at the core of qualitative research. In fact, a discussion of this sort would lead to
a conclusion that qualitative and quantitative research are not really different at all.

15. Those interested in these topics should peruse the pages of Psychometrika or
the Journal of Classification. Krantz et al. (1971–1990) also explore many of these
issues.
biases, and he finds, for example, that one rater “tends to favor countries in Central America and South America, western industrial nations, and, to a lesser extent, countries in the Oceania region” while providing lower scores for sub-Saharan Africa, Eastern Europe, and Asia. One can imagine extending Bollen’s work by adding other methods for rating democracy and by examining (as he does in a preliminary way) how the characteristics of the raters affect their ratings. Bollen’s work suggests that qualitative researchers might improve their understanding of concepts by considering various definitions of them, by considering concepts closely related to them, and by considering concepts that are different from them. This strategy, for example, is followed by Hanna Pitkin in her classic work on representation (1967).16

An exploration of measurement issues along the lines sketched above would benefit both quantitative and qualitative researchers. Indeed, a discussion of these matters is worthwhile even if it only shows qualitative researchers how quantitative work must also grapple with complex measurement problems. Because its authors want to be constructive and want to instruct, KKV invariably tries to show how quantitative notions can improve qualitative research. This is laudable, but it leads the authors to neglect the multitude of problems that confront quantitative researchers, and it ignores the extent to which quantification is based upon qualitative judgments. Both qualitative and quantitative researchers might benefit from a less didactic approach that revealed problems as well as putative solutions. This might lead to a common effort to solve problems of concept formation and measurement that vex both quantitative and qualitative researchers.

CONCLUSION

KKV is an excellent sermon, without much condescension, on what qualitative researchers can learn from quantitative researchers. As a work on methodology it has some substantial defects, such as equating explanation with causal inference, proposing a narrow definition of causality, and drawing far too little sustenance from a strong literature on measurement and concept formation. But it also has substantial strengths. First and foremost, it opens a conversation between qualitative and quantitative researchers, and that is very good. Second, its presentation of causal thinking in terms of counterfactual reasoning forces researchers to consider more carefully the problems that confront them.
counterfactuals behind their putative causal models. Third, it has an interesting discussion of selection bias that should be useful to many researchers. Fourth, the final chapter on “Increasing the Number of Observations” is one of the most important notions in the book. I wish KKV had given more concrete examples of how to do this, and I wish the authors had warned of the dangers of spatial and temporal autocorrelation that can thwart innovative attempts to increase observations, but the basic concept is a very important one.

Students will definitely profit from reading this book. The discipline has already benefited from the discussions it has kicked off. I look forward to seeing a generation of graduate students uplifted and improved by reciting its useful and informative homilies.

17. I wish, however, that they had not used the term “selection bias” (KKV 126) in an example that clearly involves sampling error. The example is presented in a section entitled “The Limits of Random Selection” so the authors may have not meant to use the term “selection bias” except in a colloquial fashion, but it is disconcerting, and certainly confusing, nevertheless.
Some Unfulfilled Promises of Quantitative Imperialism

Larry M. Bartels

King, Keohane, and Verba’s *Designing Social Inquiry: Scientific Inference in Qualitative Research* (hereafter KKV) is an important addition to the literature on research methodology in political science and throughout the social sciences. It represents a systematic effort by three of the most eminent figures in our discipline to codify the basic precepts of quantitative inference and apply them with uncommon consistency and self-consciousness to the seemingly distinct style of qualitative research that has produced most of the science in most of the social sciences over most of their history. The book seems to me to be remarkably interesting and useful both for its successes, which are considerable, and for its failures, which are also, in my view, considerable.

Here I shall touch only briefly upon one obvious and very important contribution of the book, and upon one respect in which the authors’ argument seems to me to be misguided. The rest of my discussion will be devoted to identifying some of the authors’ more notable unfulfilled promises—not because they are somehow characteristic of the book as a whole, but because they are among the more important unfulfilled promises of our entire discipline. If KKV stimulates progress on some of these fronts, as I hope and believe it will, the book will turn out to represent a very significant contribution to qualitative methodology.

THE CONTRIBUTION AND A SHORTCOMING

Anyone who thinks about social research primarily in terms of quantitative and statistical inference, as I do, has probably thought—and perhaps even
said out loud—that the world would be a happier place if only qualitative researchers would learn and respect the basic rudiments of quantitative reasoning. By presenting those rudiments clearly, engagingly, and with a minimum of technical apparatus, KKV has helped shine the light of basic methodological knowledge into many rather dark corners of the social sciences. For that we owe its authors profound thanks.

At another level KKV’s argument seems to be misguided, although in a way that seems unlikely to have significant practical consequences. It is hard to doubt that “all qualitative and quantitative researchers would benefit by more explicit attention to this logic [i.e., the logic “explicated and formalized clearly in discussions of quantitative research methods’”] in the course of designing research” (3). However, it simply does not seem to follow that “all good research can be understood—indeed, is best understood—to derive from the same underlying logic of inference” (4). Even if we set aside theorizing of every sort, from Arrow’s (1951) theorem on the incoherence of liberal preference aggregation to Collier and Levitsky’s (1997) conceptual analysis of scores of distinct types and subtypes of “democracy,” it seems pointless to attempt to force “all good [empirical] research” into the procrustean bed of “scientific inference” set forth by KKV. Would it be fruitful—or even feasible—to recast such diverse works as Michels’s *Political Parties* (1915), Polanyi’s *The Great Transformation* (1944), Lane’s *Political Ideology* (1962), Thompson’s *The Making of the English Working Class* (1963), and Fenno’s *Home Style* (1978) in the concepts and language of quantitative inference? Or are these not examples of “good research”?

KKV attempts to skirt the limitations of their focus by conceding that “analysts should simplify their descriptions only after they attain an understanding of the richness of history and culture. . . . [R]ich, unstructured knowledge of the historical and cultural context of the phenomena with which they want to deal in a simplified and scientific way is usually a requisite for avoiding simplifications that are simply wrong” (43). But since they provide no scientific criteria for recognizing “understanding” and “unstructured knowledge” when we have it, the system of inference they offer is either too narrow or radically incomplete. Perhaps it doesn’t really matter whether we speak of the process of “attain[ing] an understanding” as a poorly understood but indispensable requirement for doing science or as a poorly understood but indispensable part of the scientific process itself. I prefer the latter formulation, but the authors’ apparent insistence upon the former will not keep anyone from relying upon—or aspiring to produce—“understanding” and “unstructured knowledge.”

OMISSIONS AND AN AGENDA FOR RESEARCH

Most importantly, I am struck by what KKV leaves out of its codification of good inferential practice. I emphasize these limitations because they seem
to suggest (though apparently unintentionally) an excellent agenda for the future development of qualitative and quantitative methodology. As is often the case in scientific work, the silences and failures of the best practitioners may point the way toward a discipline’s subsequent successes. Here I shall provide four examples drawn from KKV’s discussions of uncertainty, qualitative evidence, measurement error, and multiplying observations.

Uncertainty

One of KKV’s most insistent themes concerns the importance of uncertainty in scientific inference. Its authors proclaim that “inferences without uncertainty estimates are not science as we define it” (9), and implore qualitative researchers to get on the scientific bandwagon by including estimates of uncertainty in their research reports (9 and elsewhere). But how, exactly, should well-meaning qualitative researchers implement that advice? Should they simply attempt to report their own subjective uncertainty about their conclusions? How should they attempt to reason from uncertainty about various separate aspects of their research to uncertainty about the end results of that research, if not by the standard quantitative calculus of probability? What sorts of checks on subjective reports of uncertainty about qualitative inferences might be feasible, when even the systematic policing mechanism enshrined in the quantitative approach to inference is routinely abused to the point of absurdity (Leamer 1978, 1983; Freedman 1983)? Since KKV offers so little in the way of concrete guidance, its emphasis on uncertainty can do little more than sensitize researchers to the general limitations of inference in the qualitative mode without providing the tools to overcome those limitations. As far as I know, such tools do not presently exist; but their development should be high on the research agenda of qualitative methodologists.

Qualitative Evidence

KKV’s discussion of the respective roles and merits of quantitative and qualitative evidence is equally sketchy. While its authors rightly laud Lisa Martin’s (1992) Coercive Cooperation and Robert Putnam’s (1993) Making Democracy Work for combining quantitative and qualitative evidence in especially fruitful ways (5), their discussion provides no clear account of how, exactly, Martin’s or Putnam’s juxtaposition of quantitative and qualitative evidence bolsters the force of their conclusions. Martin’s work is rushed precipitously off the stage (as most of KKV’s concrete examples are), while Putnam’s work only reappears—other than in an unrelated discussion of using alternative quantitative indicators of a single underlying theoretical concept (223–24)—in a discussion of qualitative immersion as a
source of hypotheses rather than evidence. This in turn leads to the rather patronizing conclusion that “any definition of science that does not include room for ideas regarding the generation of hypotheses is as foolish as an interpretive account that does not care about discovering truth” (38).

There is more going on here than a simple-minded distinction between (qualitative) hypothesis generation and (quantitative) hypothesis testing, or a simple-minded faith that two kinds of evidence are better than one. Qualitative evidence does more than suggest hypotheses, and analyses combining quantitative and qualitative evidence can and sometimes do amount to more than the sum of their parts. The authors of KKV do little to illuminate those facts. But the larger and more important point is that nobody else does very well either. Just as the “persuasive force” of such classic works of social science as V. O. Key’s Southern Politics in State and Nation (1984 [1949]), Stouffer et al.’s The American Soldier (1949), and Berelson, Lazarsfeld, and McPhee’s Voting (1954) “is not easily explained in conventional statistical theory even today” (Achen 1982: 12), neither is the persuasive force of these and other compelling works convincingly accounted for by partisans of interpretive, ethnographic, historical, or any other brand of qualitative inquiry.

With reference to both uncertainty and qualitative evidence, the limitations of KKV’s analysis faithfully reflect the limitations of the existing methodological literature on qualitative inference. Other gaps in KKV’s account are attributable to the limitations of the theory of quantitative inference it offers as a model for qualitative research. As a quantitative methodologist—and the coauthor of a rather optimistic survey of the recent literature in quantitative political methodology (Bartels and Brady 1993)—I am chagrined to notice how wobbly and incomplete are some of the inferential foundations that KKV claims are “explicated and formalized clearly in discussions of quantitative research methods” (3). Again, two examples will suffice to illustrate the point.

Measurement Error

The first example of the weak foundations of inferential claims is KKV’s treatment of measurement error, which—like much of the elementary textbook wisdom on that subject—is both incomplete and unrealistically optimistic. The authors assert that unsystematic (random) measurement error in explanatory variables “unfailingly [biases] inferences in predictable ways. Understanding the nature of these biases will help ameliorate or possibly avoid them” (155). Later, they assert more specifically that the resulting bias “takes a particular form: it results in the estimation of a weaker causal relationship than is the case” (158). At the end of their discussion the authors acknowledge that their analysis is based upon a model with a
single explanatory variable. However, they assert that it “applies just the same if a researcher has many explanatory variables, but only one with substantial random measurement error,” or if researchers “study the effect of each variable sequentially rather than simultaneously” (166). Their only suggestion of potential complications is a claim that “if one has multiple explanatory variables and is simultaneously analyzing their effects, and if each has different kinds of measurement error, we can only ascertain the kinds of biases likely to arise by extending the formal analysis” (166).

KKV’s assertion about the case of several explanatory variables, where only one is measured with substantial error, is quite misleading in failing to note that the bias in the parameter estimate associated with the one variable measured with substantial error will be propagated in complicated ways to all of the other parameter estimates in the analysis. This will bias them upward or downward depending on the pattern of correlations among the various explanatory variables. The book’s assertion about sequential rather than simultaneous analysis of several explanatory variables is also misleading, at least in the sense that the resulting omitted variable bias may mitigate, exacerbate, or reverse the bias attributable to measurement error. And the promise of “ascertain[ing] the kinds of biases likely to arise” in more complicated situations “by extending the formal analysis” (KKV 166) can in general be redeemed only if we have a good deal of prior information about the nature and magnitudes of the various errors—information virtually impossible to come by in all but the most well-understood and data-rich research settings (Achen 1983; Cowden and Hartley 1993). Thus, while it seems useful to have alerted qualitative researchers to the fact that measurement error in explanatory variables may lead to serious biases in parameter estimates, it seems disingenuous to suggest that quantitative tools offer reliable ways to “ameliorate or possibly avoid” (155) those biases in real qualitative research.

Multiplying Observations

The second example is KKV’s chapter on “Increasing the Number of Observations,” which seems equally disingenuous in asserting that “almost any qualitative research design can be reformulated into one with many observations, and that this can often be done without additional costly data collection if the researcher appropriately conceptualizes the observable implications that have already been gathered” (208). While it is right to emphasize the importance of “maximizing leverage” by using the available data to test many implications of a given theory (or even better, of several competing theories), KKV’s discussion obscures the fact that having many implications is not the same thing as having many observations. In order for our inferences to be valid, each of our many implications must itself be
verified using a research design that avoids the pitfall of “indeterminacy” inherent in having more explanatory variables than relevant observations.

What, then, is a “relevant observation”? KKV provides the answer in its earlier, clear, and careful discussion of causal homogeneity. Relevant observations are those for which “all units with the same value of the explanatory variables have the same expected value of the dependent variable” (91). But the more we succeed in identifying diverse empirical implications of our theories, the less likely it will be that those diverse implications can simply be accumulated as homogeneous observations in a single quantitative model. Having a richly detailed case study touching upon many implications of the same theory or theories is no substitute for “seek[ing] homogenous units across time or across space” (93), as KKV points out in the subsequent discussion of “process tracing” (226–28).

KKV allows that “attaining [causal] homogeneity is often impossible,” but goes on to assert in the next sentence that “understanding the degree of heterogeneity in our units of analysis will help us to estimate the degree of uncertainty or likely biases to be attributed to our inferences” (93–94). How is that? Again, the authors do not explain. But once again, the more important point is that nobody else does either—a point I am compelled to acknowledge despite my own efforts in that direction (Bartels 1996). If we accept KKV’s assertion that the “generally untestable” assumption of causal homogeneity (or the related assumption of “constant causal effects”) “lies at the base of all scientific research” (93), this is a loud and embarrassing silence.

CONCLUSION

In the end, KKV’s optimistic-sounding unification of quantitative and qualitative research seems to me to promise a good deal more than it delivers, and a good deal more than it could possibly deliver given the current state of political methodology in both its qualitative and quantitative modes. But perhaps that is the genius of the book. By presenting a bold and beguiling vision of a seamless, scientific methodology of social inquiry, KKV may successfully challenge all of us to make some serious progress toward implementing that vision.

1. KKV (91) uses the label “unit homogeneity” for this assumption.
Quantitative methods are great for answering questions like “How much does the average small business spend on a job posting?”, “What are the skills that make someone a data scientist?”, or even “How many licks does it take to get to the center of a Tootsie roll pop? (The answer is 3. Three licks.)” They allow you to better understand how and why people do what they do, and what kinds of meaning they ascribe to different behaviors. Put another way, quantitative methods can tell you the “what”, the “how much”, or “how often”; qualitative methods can tell you the “why” or the “how”.

Why should you use qualitative methods? In short, these qualitative studies kept us grounded and built empathy with our end users. Many of us experience “analysis paralysis” when we’re faced with a difficult decision. Often, we’re afraid of making the “wrong” choice, so we spend a huge amount of time analyzing every possibility, and struggling to reach a conclusion. At other times, however, we are convinced that we already know what the best solution is, so we make decisions quickly and don’t consider all the alternatives. In this article, we’ll explore how you can analyze the pros and cons of a decision quantitatively, so that you can make considered and well-informed choices.

About the Tool. Weighing up pros and cons can speed up the decision-making process, improve your understanding of the situation, and help you avoid decision-making paralysis. 20 students doing a first degree [postgraduates = students doing a further degree], 21 money paid to receive teaching. B. 3 Education where everyone gets into the same type of school without exams is a basic political ideal in many countries. 4 A system where there are two levels of schools reduces the opportunities for children from poorer families and favours those from richer families. 5 Some private schools have lots of wealth and receive gifts of money, and this means they can have better resources. 6 All parents want their children to achieve the best possible results at school. 7 Emphasis on the three Rs is considered by parents to be the key to success. 8 The government is increasing its provision for edu Preview — Doing Good Better by William MacAskill. Doing Good Better: How Effective Altruism Can Help You Make a Difference. by. William MacAskill (Goodreads Author).Â He does us all a service by pushing us to rise above emotion an “Doing Good Better” is a misnomer. A more accurate title would be “Alleviating First-World Guilt With More Mathematical Rigor (and Enjoying the Delusion that Cost-Efficiency Translates to Moral Superiority).” On the plus side, the book is well-intentioned and well-written.Â In spite of me not following all of the author’s arguments, I think I got enough of the gist of it for the book to make a big impression on me.